ÚLOHA č. 58

Studium polarizace viditelného záření

Pomůcky:

Optická lavice Zdroj světla: HeNe laser s polarizátorem polarizátor (Glan-Taylorův hranol) analyzátor (Glan-Taylorův hranol) fotodetektor vyhodnocovací jednotka počítač

Ú k o l : Ověřte na systému dvou polarizačních filtrů platnost Malusova zákona.

Dílčíúkoly: 1. Korigují

1. Korigujte vliv intenzity pozadí na odezvu fotodetektoru.

2. Stanovte absolutní hodnotu intenzity laserového svazku za polarizátorem.

3. Pro úhel natočení analyzátoru 0 - 360° proměřte průběh intenzity laserového svazku za analyzátorem.

4. Označte úhel minimální intenzity a nastavte jeho hodnotu na 0°.

5. Převeďte absolutní hodnoty intenzit na relativní vztažené k maximální hodnotě *I*₀. Závislost znázorněte graficky.

6. Ověřte platnost Malusova zákona pomocí lineární regrese.

Připomínky k měření a vyhodnocení:

Spusťte v počítači program *Leoi - XP MODE*. Po spuštění XP módu v systému Windows 7 zkontrolujte, zda je k počítači připojeno snímací rozhraní (Nabídka "*Rozhraní USB*" - "*Neznámé zařízení: Uvolnit*" = připojeno, "*Neznámé zařízení: připojit*" = nepřipojeno). Před měřením proveďte odečet intenzity pozadí při vypnutém laseru (nabídka "*Adjustment*" - "*Record Dark Current*"). Zkontrolujte, zda laserový svazek prochází celou optickou soustavou a dopadá na matnici fotodetektoru.

Vlastní měření provedeme s nastavením nabídky "Settings" dle následujícího obrázku:

	🕅 - Automatic Experimental System for Polarized Light										
	File	Work	Settings Adjustment Data Proc			essing Help	D				
	Г	ן 🚘	Motor 1			🕺 🖂 🗶 📴 🚇 🖉 💿					
			Motor 2								
	<d< th=""><th>ata-1></th><th colspan="3">Motor 3</th><th colspan="6">> <data-5> </data-5></th></d<>	ata-1>	Motor 3			> <data-5> </data-5>					
		00	 Collect Signal Collect Reference Calculate Reference(y/y`) 								
			Switch Coordinate System								
		-									
		0.7	. E								
			Ē								

Spusťte měření příkazem "Work" - "Start collection".

Pokud je záznam shora omezen hodnotou 1, došlo k překročení maximální hodnoty relativní intenzity, kterou je detektor schopen zaznamenat. Informujte o problému vyučujícího, který přenastaví polohu polarizátoru.

Po úspěšném měření vyhledejte v získaném záznamu nejbližší minimum a pomocí nabídky "*Data Processing*" - "*Shift Coordinate*" toto minimum označte kurzorem.

Stiskem klávesy Enter budete dotázáni, zda má být zvolený úhel nastaven na 0°. Toto potvrďte. Získaný průběh absolutních hodnot intenzity převeďte na relativní vztažené k maximální hodnotě I_0 pomocí příkazu "*Data Processing*" - "*Normalize*". Data uložte. Uložený soubor obsahuje dva sloupce dat oddělený mezerou. Data importujte do MS Excel a pro vybranou oblast dat zpracujte lineární regresi $I/I_0 = a \cos^2\theta$ jako závislost y = ax+b. Shodu datové řady s teoretickým vztahem diskutujte podle hodnoty směrnice a její nejistoty typu A.