CHAPTER 11

HIGHER-ORDER
DIFFERENTIALS



Higher-order partial derivatives

If we consider a partial derivative of a function f with respect
to a variable x; at a general point (zy, 2o, ..., x,), itisagain a
function of variables (z1, xs, ..., z,) and we can consider its
partial derivative with respect to j-th variable as a function

0? a (0
e @ = (@) = 5 (@) (1)

This function is called partial derivative of second order
of a function f with respect to variables z; and z;.

Similarly we can proceed further. In general, we get a k-th order
partial derivative of f with respect to variables z;,, z;,, ..., z; :
oF f
T T T
(L’Zk x,k_l . 0Ty

or [ (). (11.2)
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Calculus 1 © Magdalena Hyksova, CTU in Prague



Theorem 1 (Interchangeability of partial derivatives).
If a function f: D; C R — R! has a continuous partial derivative
of the second order with respect to z; and x; in some neighbour-
hood of a point a € DY, then there exists the partial derivative of
the second order of the function f with respect to z; and z; at a
and both derivatives are equal:
*f 0*f

8xj3xi (CL) n 8%8% (a>
We also say that under the stated conditions, partial derivatives
are interchangable.

(11.3)

More general:

Theorem 2 (Interchangeability of partial derivatives).

If a function f: Dy C R" — R! has continuous partial derivatives
up to the k-th order on an open set M C Dy, then these partial
derivatives do not depend on the order of variables but only on
the number of differentiations with respect to individual variables.
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Function sets C*(M)
The set C*(M) is a set of functions f: D; C R® — R! that have
continuous partial derivatives up to the k-th order on the given
open subset M C D;. The set C*(M) consists of functions that
are continuous on M.

Higher-order partial derivatives of a composite function
Let us now return to partial derivatives of composite functions
and ask how to find their higher-order derivatives.

Suppose that a function f: D, ¢ R* — R! and a vector function
g = (g1, 92): Dy C R? — R? are given such that

(z,y) = (¢1(u,v), g2(u,v)) € Dy for all (u,v) € D,.

Suppose that the functions ¢;, g, have continuous partial deri-
vatives of the second order at a point (u,v) and the function
f has continuous partial derivatives of the second order at the
point (z,y) = (g1(u,v), g2(u,v)). Then, as we know, the composite
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function h = f o g satisfies the equation

%(u,v) = (11.4)
o 0 0
S o). g 0) Z2 )+ S 0,0, g0, 0) 22 )

Using the formula for the derivative of a composite function, we
can find the second derivatives:

% (gi(gl(u,v),gg(u,v))%il(u,v)> = a% (gi(m(%“%%(%”)))'aagul(uvﬂ)"'

0 9
+ 2 (w0l 0) - 5 (2 00)) = | SR 000 a0 G2 )+
9?2 0 0 0 0
+W(£B<91(u,v),g2(u, v))%(“a v)] ﬁ(“aU)'i'aii(gl(u’v)’”(u’v)) 8521 (u,2).

Shortly,

0 (0f09:\ _&f (991" | 0°f 091092 , Of OPgy
Ou \dzx ou )  0x2 \ du Oxdy Ou Ou  Ox Ou?’
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Analogously we get

0 (009 _ 0] 99109, [ (09:\"  Of P
ou\dy Ou )  0x0y Ou Ou  Oy? \ Ou

thus
h _ 0 (0f0g  0f0g:\ _
ouz  Ou \Ox Ou Oy ou/)

_Bf (091\° PF (0", OF 09109x  Of g OF O
Oxdy Ou Ou  Ox Ou? Oy Ou?’

a2

Similarly,

Oh _ B (99\", Pf (09", OF 99109 Of gy
o2 0z2 \ Ov dy? \ Jv Jxdy Ov v dx Ov?

ou ay? \ Ou

OFh _9°f09109  f 0909

oudv 022 Ou Ov ~ 0y Ou Ov
Pf (09109 091092\  Of g1  Of &gy
Oxdy \ Ou Ov ~ Ov Ou Ox Oudv Oy Oudv

Ay ou?’

ﬁygz

dy 2’
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& Example 1. Find all partial derivatives of the function
f(z,y) = 2° + 32°y* — 5y*
up to the third order.
Solution. For all (z,y) € R?:
fola,y) = 52" +92%y* — 5y*, [, (,y) = 62°y — 202y>;

fon(x,y) = 202° 4 182y°, f;y(:v, y) = 62° — 6027?
Foy = Fya(@,y) = 182%y — 20y°;
f;l;x(‘ra y) = 60$2+18y2 ) f:;/g/py<x, y) - f;/;x(x7 y) - f;;x(x, y) = 36{L‘y,

"

Frun(@y) = =1202y , . (2,y) = fro,(2,y) = fu,,(z,y) = 182°—60y°.
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& Example 2. Find the partial derivative f'...(z,y,z) of the
function f(z,y, z) = 3x°y?2% — xe?.

Solution. For all (z,y) € R*:

f;(x,y,z) = 15a%y?2® — e¥?,
f:lcly(xvy7z) = 301‘ yz _Zeyz7
f:::lg//z(xv Y, Z) — 90&74yz2 — eY* — yzeyz ’

f;,(;?/)zz(x, y,2) = 180xtyz — 2ye¥® — yPzev*.

Exercises
1. Let f(z,y) = In(z+y), (z,y) € Dy ={(z,y) e R? | y > —z}.
Show that
92 f 02 f 02 f 92 f |

and forany k e Nandanyr =0,1,...,k:

ok f

Gar—ray Y = e —

(x +y)k
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2. Let f(z,y) =e", (x,y) € R%. Show that

) ) I i
8—?;@ y) = ye™, 8—5(1‘, y) = we a—;;(w,y) = ye™,
a2f 2 xy 82f a2f

Gy =g () = () = (1 my)e

Show that for any k£ € N, the following equation holds:
8_1:11:(x,y) :yke:vy7 8_yk(x7y> :Ike Y.
3. Let f(z,y) = ", (x,y) € R%. Show that

8kf akf kf o
— = — =e" =0,1,...,k; k
Ok (.T,y) 8yk (.Q?,y) Oxk— 7"8 T<x>y) € » T » Ly » vy €
4. Let f(x,y) = e*™¥", (z,y) € R% Show that for any k € N :

a_(x7y) = et ) gg (SL’ y) = 2ye )

o O o
a—;,:(x,y) ="t M(l’,y) = 2ye"™V = 5y & Y)-
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5. Show that the function f satisfies the given equation.
@ flzy) =l +y?), [+ f,=0.
y " 9 plf
(b) f(x,y)zm, Jow =@y, = 0.
1

(C) f(z7y7z): \/m?

feo+ Fyy+ oo =0

1

(@ fr.2) =B EPTE, flA = s

Differential of the £-th order

In the differential calculus of functions of one variable, we have
introduced differentials of higher orders to improve an approxi-
mation of functions. Similarly we can proceed also in the case of
functions of more variables.
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Definition 1. Suppose that f has partial derivatives of the
second order in a neighbourhood of a point a and these
derivatives are continuous at a. Then the differential of the
second order of the function [ at the point a is defined
by the formula

0*f 0*f

2 _ 2 Y J 2 ﬁ 2
dfla,h) = 8a: —5(a)hi +8 5(a )h2+"'+8x2(a)h”+

(11.5)

9% f 9% f
5u s (@hiha & - 25 (@) i,

2
i ('31:” 18xn
where h = (hq, hs, ..., h,) € R"™.

Specially, for functions of two variables, we have

i
03

, O

2
(%18@ (a)h;. (11.6)

&f(a,h) = L @y +

a ) (a)h1h2 +
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This differential can also be written in the form

o*f o*f
8 02 8:1518:1:2

d*f(a,x —a) = (a)(r;—a)*+2 (a)(x1—ay)(ry—az)+

62
L
Oxs
or in the form

(a)(l’g — a2)2, r = (Il,LUQ) € R2, (1 1 7)

0% f
891:1(91'2

d*f(a, dz) = (92];( )da? 4 2

0
(a)dz;das + —5

dx = (dzy, dz,) € R?. (11.8)

Analogously we can also introduce differentials of higher orders.
For functions of two variables, we can write

0 0 "k a)
k _ k—jy1J
d"f(a,h) = (_8xh1 + _8yh2) ]E ( )(‘3x’f J@yﬂh hd.
(11.9)
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Obviously,

%(G)hl +

g(a)hg = df(a,h),

d'f(a,h) = 5

0 f
0xdy

82
(@il + 5 (@),

d*f(a,h) = %(a)hf +2

Pf
0x20y

D’f Pf

( )h2h2+3a dy 2( )h1h2 6y3( )hg,

83
d®f(a,h) = a—gj;(a)hi’—l—?)

etc.

For more variables:

k! " f(a)
d*f(a, h) = RITRT2 .. gl
flak)= 2. S ey o
r1+ro+-+rn==k

(11.10)
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For example:

df(a,h) =

d?f(a,h) =

&Bfla,h) =

d 9 d

@+ L@+ L@hs, (bt o) € B

PL a2+ 8 anz 4+ CLanz 1291

Faz (@i + 55 (@ + 55 (@)hi + 255 (@)hha+

2an( )hih +262f( Vhohs,  (hy, h, hs) € R
Dz BT L g g, 112, '

63f 3 a3f 3 a3f 3 an 9

preltl *ﬁ( a)hy + 55 (@)hs + 355 29y (a)hiho+
a3f 2 a3f 2 83]0 9

3656’20 ( )h h3+3a a 2( )h1h2+381'822(a)h1h3+
a3f 2 83f 2 83']0

39,20 (a)h3hs + 3W(a)h2h3 + 555,72 (a)hihohs .
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Taylor polynomial

Definition 2. Taylor polynomial of degree i for
a function f at a point « is defined by the formula

Th(a, h) = f(a) +df(a, h)+ d*F(@, ) + -+ d*F(a, ),

k!
h e R", (11.11)
or (in a different notation)
1
T’}(a,w —a)= f(a)+df(a,z — a)+§d2f(a,a; —a)+---+
+%d’“f(a,w—a),:ceR”. (11.12)

Taylor polynomial T’;(a, x — a) is again used for an approximation
of a function f in the neighbourhood of a point a. This approxi-
mation is based on the following theorem.
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Theorem 3 (Taylor’s theorem). Let f: D; C R" — R!, f € CF*!
on an open set M C Dy;. Leta and a+ h be two points of M such
that the whole line segment with the end points a and a + h lies
in M. Then there exists a point € on this line segment such that

fla+h) = f(a)+df(a, )+ 50 f(a, h) b +o0d fla, )+ R (R)

k!
(11.13)

where 1
R*(h) = o 1)!d’“+1f(€,h). (11.14)

The equality (11.13) is called Taylor’s formula and the number
(11.14) is called a remainder in the Lagrange form.
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& Example 3. Find the differential of the first, second and third
order for the function f(z,y) = e” cosy at a = (0,0).
Solution.

folzy) = e"cosy, f,(0,0) L,
flxy) = —e"siny, £,(0,0) = 0,
w(ty) = eeosy, f,(0,00 = 1,
f:;ly(xay) = —emsiny, fg:y(070> = 07
folzy) = —eeosy, f,(0,0) = -1,
freo(w,y) = e"cosy, fr,(0.0) = 1,
f:/n/;:y<x7y) = —e' Siny7 fglnl;:y([)?(]) = O)
fogy(y) = —e"cosy, f,,,(0,0) = —1,
;;y(:t, y) =  €e'siny, ;’;y(O, 0) 0.
The corresponding differentials are now equal to
d'£((0,0), (hy,he)) = hy, (hy,hy) € R?;
d2f((0, 0), (hl, hg)) == h% - h% 5 (hl, hg) < R2 )

d3f((0, 0), (hl, hQ)) == hi’ - 3h1h% , (hl, hg) € R2 .
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& Example 4. Using Taylor polynomial of degree 2, find the
approximate value of the function f(x,y) = a¥ at (1,05; 3,02).

Solution. Let us approximate the function f(z,y) = z¥ in the
neighbourhood of a = (1, 3) using a quadratic function df(a, h).
Partial derivatives are equal to

/

= y—1 = 3
fla) = yar| 7
' — Y] ‘ = 0
fy(a) z’Inz| ,
ferl@) = yly—1)2"72| = 6,
" g 1 ‘ _
fxy(a) VT +yx n:ca ,
(@) = a¥In’ ( ~ 0.
fyy(@) wIn"z|

Using Taylor formula, we obtain (the exact value is 1,1588)
1
£(1,05;3,02) = 1+3.0,05+0-o,02+§(6-0,052+2-1-0,05.0,02+0-0,022) —

= 1,1585.
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@ Example 5. Find the Taylor polynomial T%(a, h) of the function
f(z,y) = xsin?y at the point a = (1, 7/2).

Solution. We are looking for the Taylor polynomial of the third
degree. We need the differentials d* f(a, h) for k = 1,2, 3.

of of

%(l‘, y) = sin?y, a—y(x, y) = 2rsiny cosy = xsin 2y,
0? 0? _ 0?
a_xf};l(xay) 207 Wgy(‘ruy>281n2ya a—y‘é(x,y)=2x0082y,
>’f >Ff
@(‘Tay) _07 M(x7y)_0a
03 0? ,
8:U8J;2 (x,y) = 2cos 2y, a—?j;(m, y) = —4xsin 2y.

Forz =1, y = n/2 we get

df(a,h) = (sin2 g) hy + (sinm)hs = i,

d*f(a,h) = 0-h? + (2sinm)hihy + (2cos7)h3 = —2h3,
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A f(a, h) = 0-h343-0-h2hy+3(2 cos ) hihi4-(—4sin ) hi = —6h h2,
thus

T4(a.h) = f(a) + df(a, h) + %dQ fla,h) + %d?) Fla,h) =

=14+Mm —hg—hlhg, (hl,hg) €R2.

Using the notation from (11.7), we can also write
df(a,x —a) =z, — 1,

d*fla,x —a) = —2(zy — 7/2)?,
&fla,x —a) = —6(xy —1)(z2 — 7/2)?,
so that

THa,x—a) =14 (z1 — 1) — (22 — 7/2)* — (21 — a1) (22 — 7/2)?,

(Il, 1’2) € R2.
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@ Example 6. Find the Taylor polynomial T%(a, h) of the function
f(x,y) = 2%yz at the point a = (2, 3, 1).
Solution. f(2,3,1) = 12,

o) ) o)
df(a,h) = f( )h1+—f( )h2+—f(a)h3:12h1+4h2+12h3,
ox dy 0z
% f % f % f % f
dzf(CI’?h) Ox 2( )h2 a 2( )h2 o2 2( )h3+2a 8 ( )h1h2+
0? 9?
+26xgz(a)h1h3 + 28yg (@)hahs = 6h3 + 8hihy + 12k hs3,
83 83 3
@ flah) = S @ + S5 @hd+ TH @+
3 Of hihy + 3 Of h3hs + 3 O'f hih3 +3 Of hih3
+826()12+88()13+682()12+882()13+
83f 2 O f 2 83f
+3a 505 ( )hh3+3882( )hh +63882(a)h1h2h3_
= 6h2hg + 18h3hs3 + 24h hohs, thus
Ti(a,h) = 12+ 120y + 4hy + 12h3 + 307 + 4hihg + 6hyhs+

+h%h2 + Bh%hg + 4h1hohg, (hl, ho, hg) € R3.
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Exercises
1. Find the k-th differential of the function f at the point a.

(@) f(x,y) =coszcosy, a=(0,0), k= 2.
[d*f(a, h) = —hi — h]
(b) flx,y,2) =2%y*2, a=(1,2,3), k =2.
[d2f(a, k) = T2h% + 6h% + T2h1hy + 24hyhs + Shohs]
) f(z,y) =ylnz, a=(1,3), k=3.
A3 f(a, h) = 6h% — 3h2hs)]

2. Find the second differential of the given function f at an
arbitrary point x.

(@) f(z,y) =sin(2z +y).
[d%f(x, h) = —sin(2z + y)(4h? + 4hihy + h3)

() f(z,y) =In(z—y).
[d2f(z, h) = — L (h% + h2 — 2h1hs.]

(z—y)?
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(€) flz,y,2) =sin(z +y+2). [d%f(x, h) =
—sin(x +y + 2)(h? + 2hihy + 2hihs + h3 + 2hohs + hZ]
(d) f(z,y) =zsin’y.
[d?f(x, dz) = 2sin 2y dz dy + 2z cos 2y dy?|
(e) flx,y) =ay* —a?y.
[d?f(z, de) = —2y da? + 4(y — x) de dy + 22 dy?
(f) flz,y,2) = zyz.
[d%f(x, dz) = 22 dody + 2y dordz + 2xdy dz]

3. Find the Taylor polynomial of the k-th degree for the given
function f at the given point a.

@) flx,y)=In(1+z)In(1+y),a=(0,0),k=3.
[T3(a, h) = hihy — 3hihy — $hih3]
(b) f(x,y,2) =sinzsinysinz,a = (7/4,7/4,7/4), k = 2.
[ch(a, h) =
V2/4(1+hy+ho+hy—3ih3—Lh3—Lh3+hiho+hihs+hohs)
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4. Approximate the function f(z,y) = e siny in the neighbour-
hood of o = (0, 0) by a Taylor polynomial of the third degree.

[e7siny =y + zy + 32% — §y’]

5. Using Taylor polynomial of the second degree, find the ap-
proximate values of the following numbers.

(a) 0,962 0,020 §]
(b) &/0,98¢/1,03 1,000 654 7]
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