
CHAPTER 6

HIGHER-ORDER
DERIVATIVES
GRAPHS OF FUNCTIONS



Derivatives and higher-order differentials

Definition 1. If the derivative f ′ exists at every point of an
interval I, then its derivative

f ′′(x) =
d2f

dx2
(x) = (f ′)′(x)

is called second derivative of f on I.

For n ∈ N , n = 2, 3, · · · , the n-th derivative or the deriva-
tive of the n-th order of the function f on I is defined by
a recursive formula

f (n)(x) =
dnf

dxn
(x) =

d

dx
f (n−1)(x) , x ∈ I ,

provided these derivatives exist on I.

If I = Df then f (n) is called the n-th derivative of f .

We will also denote f (0) ≡ f .
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* Example 1.

Find the third derivative of the function

f(x) = 2x5 − 3x4 + 5x3 + 3x2 + 5x− 1 .

Solution.
f ′(x) = 10x4 − 12x3 + 15x2 + 6x+ 5

f ′′(x) = 40x3 − 36x2 + 30x+ 6

f ′′′(x) = 120x3 − 72x+ 30

Definition 2. If f (n)(x0) exists, then

dnf(a;h) = f (n)(a)hn

is called the differential of the n-th order of the function
f in a point x0.
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Theorem 1 (Leibniz rule)

Let functions f, g be such that their derivatives of orders 1, 2, . . . , n

exist at x0. Then for every n ∈ N the following equation holds:

(
f · g

)(n)
(x0) =

n∑
k=0

(
n

k

)
f (k)(x0) · g(n−k)(x0) ,

where
(
n

k

)
=

n!

k!(n− k)!
..

Remark. For example:

(uv)′ = uv′ + u′v

(uv)′′ = uv′′ + 2u′v′ + u′′v

(uv)′′′ = uv′′′ + 3u′v′′ + 3u′′v′ + u′′′v

Proof. By mathematical induction: for n = 1, we simply have a
derivative of a product.
Suppose that the relation holds for n. By differentiating we get
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(
f(x)g(x)

)(n+1)
=
((
f(x)g(x)

)(n))′
=

=
(∑n

k=0

(
n
k

)
f (k)(x)g(n−k)(x)

)′
=

=
∑n

k=0

(
n
k

)
f (k+1)(x)g(n−k)(x) +

∑n
k=0

(
n
k

)
f (k)(x)g(n−k+1)(x) =

=
∑n+1

k=1

(
n
k−1

)
f (k)(x)g(n−k+1)(x) +

∑n
k=0

(
n
k

)
f (k)(x)g(n−k+1)(x) =

= f (n+1)(x)g(x) +
∑n

k=1

[(
n
k−1

)
+
(
n
k

)]
f (k)(x)g(n−k+1)(x)+

+f(x)g(n+1)(x) =

=
∑n+1

k=0

(
n+1
k

)
f (k)(x)g(n+1−k)(x) .

Calculus 1 c© Magdalena Hyksova, CTU in Prague 5



Remark: The set of all functions f : X → R that have continuous
n-th derivatives (and thus also all derivatives of a lower order) on
a set X is denoted by Cn(X).

The set of functions that are continuous on X is denoted by
C0(X).

The set of all functions f : X → R that have continuous derivati-
ves of all orders on a set X is denoted by C∞(X).

Obviously,

C∞(X) ⊂ · · · ⊂ Cn(X) ⊂ Cn−1(X) ⊂ · · · ⊂ C1(X) ⊂ C0(X)

for all n ∈ N.
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Taylor polynomial

Definition 3. Let f ′(x0), . . . f (n)(x0) exist. The polynomial

Tnf(x0;h) = f(x0) + f ′(x0)h+
f ′′(x0)

2!
h2 + · · ·+ f (n)(x0)

n!
hn

is called Taylor polynomial of the n-th order of the function f

in a pointx0.

The following theorem enables an approximation of functions.
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Theorem 2 (Taylor).

Let f(x) be defined on [a, b] and let derivatives of all orders be
continuous on (a, b). Then for any two points x, x0 ∈ [a, b] there
exists a point ξ between x and x0 such that

f(x) = f(x0) + f ′(x0)(x− x0) +
1

2!
f ′′(x0)(x− x0)2 + · · ·

· · ·+ 1

n!
f (n)(x0)(x− x0)n +Rn+1(x), (6.1)

where

Rn+1(x) =
1

(n+ 1)!
f (n+1)(ξ)(x− x0)n+1 . (6.2)

The number Rn+1(x) is called a Lagrange remainder.
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* Example 2.

Find the Taylor polynomial of f(x) = ex at x = 0.

Solution.

For every k ∈ N, x ∈ R : f (k)(x) = (ex)(k) = ex, f (k)(0) = 1 .

Thus

ex = 1 + x+
x2

2!
+ · · ·+ xn

n!
+Rn+1(x), Rn+1(x) =

eξ

(n+ 1)!
xn+1 ,

where ξ lies between 0 and x.

Similarly:

sinx = x− x3

3!
+
x5

5!
− · · ·+ (−1)n−1 x2n−1

(2n− 1)!
+

+ (−1)n cos ξ

(2n+ 1)!
x2n+1 , x ∈ R

Calculus 1 c© Magdalena Hyksova, CTU in Prague 9



cosx = 1− x2

2!
+
x4

4!
− · · ·+ (−1)n x2n

(2n)!
+

+ (−1)n+1 cos ξ

(2n+ 2)!
x2n+2 , x ∈ R

ln(x+ 1) = x− x2

2
+
x3

3
− · · ·+ (−1)n−1x

n

n
+

(−1)n 1

(n+ 1)(ξ + 1)n+1
xn+1 , x > −1
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Behaviour of a function – monotonicity

Let f ′ exist on an interval I = (a, b).

Theorem 3. If f ′(x) > 0 for all x ∈ I, then f is increasing on I.

Proof. Consider x1, x2 ∈ I, x1 < x2. We would like to show that
f(x1) < f(x2). Lagrange theorem implies the existence of a point
c ∈ (x1, x2) , such that

f(x2)− f(x1) = f ′(c)(x2 − x1). (6.3)

The assumptions x2 > x1 and f ′(c) > 0 imply that the right side
of the equation (6.3) is positive, thus f(x2) > f(x1).

Corollary. If f is decreasing or non-increasing on an interval I
and has a derivative on I, then f ′(x) ≤ 0.
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Analogously:

Theorem 4. If f ′(x) ≥ 0 for all x ∈ I, then f is non-decreasing
on the interval I.

Theorem 5. If f ′(x) < 0 for all x ∈ I, then f is decreasing on the
interval I.

Proof. Let x1, x2 ∈ I, x1 < x2. We have to prove that f(x1) >
f(x2). The Lagrange theorem implies the existence of c ∈ (x1, x2) ,

such that (6.3). Since x2 > x1 and f ′(c) < 0, the right side of (6.3)
is negative, thus f(x2) < f(x1).

Corollary. If f is increasing or non-decreasing on an interval I
and its derivative exists on I, then f ′(x) ≥ 0.

Theorem 6. If f ′(x) ≤ 0 for all x ∈ I, then f is non-increasing on
the interval I.
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* Example 3.

Determine the intervals of monotonicity of the function

f(x) = 12x− 2x2 .

Solution.

f ′(x) = 12− 4x = 4(3− x) = 0 for x = 3 ;

f(x) > 0 for x < 3; f(x) < 0 for x > 3.

The function is increasing on (−∞, 3) , decreasing on (3,∞).

Calculus 1 c© Magdalena Hyksova, CTU in Prague 13



Local (relative) extremes

Definition 4. A function f has a local (relative) maximum,
resp. local (relative) minimum at x0 ∈ Df if and only if
there exists a punctured neighbourhood P (x0) such that
f(x) ≤ f(x0), resp. f(x) ≥ f(x0), for all x ∈ P (x0).

If we replace unstrict inequalities by strict ones, we speak
on strict local maximum, resp. strict local minimum.

Local maximas a minimas are also called local extremes,
strict maximas and minimas are called strict local extre-
mes of a function f .
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Theorem 7. Let x0 ∈ Df be not a boundary point of the domain
Df of a function f . If f ′(a) 6= 0, then f does not have an extreme
at x0 .

Proof. Let f ′(x0) = A 6= 0. Then for every ε > 0 there exists δ > 0

such that
A− ε < f(x)− f(a)

x− a
< A+ ε .

for all x ∈ Pδ(x0). Suppose for example that A > 0 and consider

ε =
A

2
. Then

0 <
A

2
<
f(x)− f(a)

x− a
.

for all x ∈ Pδ(x0). Further, f(x) > f(a) for x > a and f(x) < f(a)

for x < a. The function f therefore does not have a local extreme
at x0.
Similarly for A < 0. �
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Remark. The fact that f ′(x0) > 0 or f ′(x0) < 0 does not imply that
f is increasing or decreasing on some neighbourhood of x0.

* Example 4.

Consider a function f(x) = x+ πx2 sin
1

x
pro x 6= 0 ; f(0) = 0.

Obviously, f ′(0) = 1, but the function is not increasing on any
neighbourhood of x = 0, because for sufficiently high n ∈ N it is

f

(
1

(2n+ 1/2)π

)
> f

(
1

(2n− 1/2)π

)
.
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Theorem 8. Let f be a differentiable function, let f ′(x0) = 0.
If there exists Pδ(x0) such that

f ′(x) > 0 for x < x0 and f ′(x) < 0 for x > x0, x ∈ Pδ(x0),
then f has a strict local maximum at x0.

If there exists Pδ(x0) such that

f ′(x) < 0 for x < x0 and f ′(x) > 0 for x > x0, x ∈ Pδ(x0),
then f has a strict local minimum at x0.

If there exists Pδ(x0) such that f ′(x) < 0 or f ′(x) > 0 for all x ∈
Pδ(x0), then f does not have a local extreme at x0.
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* Example 5.

Find local extremes of

f(x) = 12x− 2x2 .

Solution.

f ′(x) = 12− 4x = 4(3− x) = 0 for x = 3 ;

f(x) > 0 for x < 3; f(x) < 0 for x > 3.

f is increasing on (−∞, 3) , decreasing on (3,∞), thus it has a
strict local maximum at 3, namely 18 .
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Global extremes

Sometimes we need to find global extremes on a compact, i.e.,
bounded and closed set M . The Weierstrass theorem implies
that if a function f(x) is continuous, then there exist poitsin M in
which f(x) attains its maximal and minimal value. Obviously, if x
is not a boundary point of M and f ′(x) 6= 0, then f does not have
a global extreme at x. It is therefore sufficient to investigate the
remaining points of M :

• boundary points of M

• points where the derivative is equal to zero

• points where the derivative does not exist

It there exist only a finite number of such points, it is sufficient
to compare their function values and select maximum and mini-
mum.
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* Example 6.

Find global extremes of a function

f(x) = |x3 − 3x| , x ∈ 〈−2
√
3,
√
3〉 .

Solution. f is continuous on a compact interval 〈−2
√
3,
√
3〉, glo-

bal minimum and maximum exist.
Candidates:

• Boundary points, i.e., −2
√
3 a
√
3

• f ′(x) does not exist for −
√
3, 0 and

√
3

• f ′(x) = 0 for −1, 1

Now it is sufficient to find and compare function values:

f(−2
√
3) = 18

√
3 , f(

√
3) = f(−

√
3) = f(0) = 0 ,

f(−1) = f(1) = 2 .

f attains a global maximum 18
√
3 at −2

√
3 and global minimum

0 at −
√
3,
√
3 and 0.
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Convex and concave functions,
inflex points

Definition 5. Let f ′(x0) exist. We say that f is convex,
resp. concave at x0 if and only if there exists U(x0; δ) such
that the graph of f lies above, resp. below a tangent x0 for
all x ∈ U(x0; δ).

A function f is called convex, resp. concave on an iterval
(a, b) if and only if it is convex, resp. concave at each point
of (a, b).

A point x0 ∈ Df is called an inflex point of f if and only if
there exists a tangent to its graph at

(
x0, f(x0)

)
such that f

changes from convex to concave or vice versa at this point.
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Theorem 9. Let f : (a, b)→ R have a derivative on (a, b). Then

(i) If f ′ is increasing on (a, b), then f
is convex on (a, b).

(ii) If f ′ is decreasing on (a, b), then f
is concave on (a, b).

(iii) If f ′ has a local extreme at x0 ∈ (a, b), then x0 is an
inflex point of f .

Thus:
Theorem 10. Let f : (a, b) → R have a second derivative on
(a, b). Then:

(i) If f ′′(x) > 0 for all x ∈ (a, b), then f is convex on (a, b).

(ii) If f ′′(x) < 0 for all x ∈ (a, b), then f concave on (a, b).

(iii) If f ′′(x0) = 0 and f ′′ changes a sign at x0 ∈ (a, b), then
f hax an inflex point at x0.
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