CHAPTER 6

HIGHER-ORDER

DERIVATIVES
GRAPHS OF FUNCTIONS



Derivatives and higher-order differentials

Definition 1. If the derivative f’ exists at every point of an

interval I, then its derivative
1! d2f N/
f'(@) = T5@) = () ()

is called second derivative of f on /.

Forn e N,n=2,3, ---, the n-th derivative or the deriva-
tive of the n-th order of the function f on [ is defined by
a recursive formula

_a'f

~dan

@)=L @)= 2 o), cel,

provided these derivatives exist on I.
If I = D; then f(™ is called the n-th derivative of f.
We will also denote f(© = f.
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& Example 1.

Find the third derivative of the function

f(x) =22° — 32" + 52 + 32® + 5w — 1.

Solution.
f(x) = 102" — 1223 + 152% + 62 + 5

f'x) = 402° — 3622 + 302 + 6
f"(x) = 1202° — 722 + 30

Definition 2. If /(") (x,) exists, then
d"f(a;h) = f™(a)h"

is called the differential of the n-th order of the function
f ina point z,.
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Theorem 1 (Leibniz rule)

Let functions f, g be such that their derivatives of orders1,2,....n
exist at xy. Then for every n € N the following equation holds:

n

(f-9) ™ (20) = Z (Z) FE (o) - g (o),

k=0
n n!
h = — .
where (k) Hn — k).

Remark. For example:

(wv) = w' +d'v
(wo)”" = w" +2u'V 4+ v
(uv)/// — u,U/// _|_ 3u/,l}// + 3u//,U/ _|_u///,U

Proof. By mathematical induction: for n = 1, we simply have a
derivative of a product.
Suppose that the relation holds for n. By differentiating we get
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(F@)g() ™" = (F)a() ™) =

= (i () O (@)g () =

= S0 (IS @)g P ) + Sy () ()9 ) =
= S () IO @) @) + S (1) ()R ) =

= (@)@ + Ticy (1) + ()] SO0+
H()g" ) (x) =

=20 () f P (@) ()
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Remark: The set of all functions f : X — R that have continuous
n-th derivatives (and thus also all derivatives of a lower order) on
a set X is denoted by C,,(X).

The set of functions that are continuous on X is denoted by
Co(X).

The set of all functions f : X — R that have continuous derivati-
ves of all orders on a set X is denoted by C' (X).

Obviously,
Co(X) T COX)CCrq(X) - CCi(X) C Cp(X)

for all n € N.
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Taylor polynomial

Definition 3. Let f'(xy), ... f™(x,) exist. The polynomial
f”( 0) ;2 F (o)

n!

T f(zo; h) = f(x0) + f'(20)h + 244 R

is called Taylor polynomial of the n-th order of the function f
in a pointz,.

The following theorem enables an approximation of functions.

Calculus 1 © Magdalena Hyksova, CTU in Prague



Theorem 2 (Taylor).

Let f(z) be defined on |a,b] and let derivatives of all orders be
continuous on (a,b). Then for any two points x,z, € [a,b] there
exists a point £ between x and x, such that

f(@) = f(xo) + f'(2zo)(x — x0) + %f”(ﬂfo)(f’c —x0)? + -

o [ )@ = )+ Rua(e), (61)

where

The number R, () is called a Lagrange remainder.
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& Example 2.

Find the Taylor polynomial of f(z) =e” at x = 0.

Solution.

Forevery k€ N,z ¢ R: f(z) = (em)®) = e, f®)(0) = 1.

Thus
N 7 z" et
(§ :1“‘1"{‘5‘1““5 +Rn+1($), Rn+1(l’):

where ¢ lies between 0 and x.

Similarly:

1,3 1'5 L x2n71
smx:x—a—i—a—-“—i—(—) m"‘

n COS§ 2n+1
1)t
o

reR
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2 4 2n

r x G
cosle—a—kz—---—i—(—l) (2n)!+
+ (_ )n+1 COS& 2n+2 T € R
(2n +2)! ’
2 SU3 "
1 D=z——=—+=—— D
n(z+1)=ux +3 +(=1) p—
n 1 n+1
(—1) " > -1
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Behaviour of a function — monotonicity

Let f’ exist on an interval I = (a,b).

Theorem 3. If f/(x) > 0 forall x € I, then f is increasing on I.

Proof. Consider z,,2, € I, x; < x2. We would like to show that
f(z1) < f(x9). Lagrange theorem implies the existence of a point
¢ € (z1,x9), such that

f(xe) = fz1) = f'(c)(xa — 11). (6.3)

The assumptions z, > x; and f’(¢) > 0 imply that the right side
of the equation (6.3) is positive, thus f(z2) > f(z1).

Corollary. If f is decreasing or non-increasing on an interval 1
and has a derivative on I, then f'(x) < 0.
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Analogously:

Theorem 4. If f'(z) > 0 for all x € I, then f is non-decreasing
on the interval I.

Theorem 5. If f'(x) < 0 forall x € I, then f is decreasing on the
interval I.

Proof. Let z;,25 € I, x; < x,. We have to prove that f(z;) >
f(z2). The Lagrange theorem implies the existence of ¢ € (1, x2),
such that (6.3). Since x; > 1 and f’(c¢) < 0, the right side of (6.3)
is negative, thus f(x2) < f(x1).

Corollary. If f is increasing or non-decreasing on an interval 1
and its derivative exists on I, then f'(x) > 0.

Theorem 6. /f f'(x) <0 forall x € I, then f is non-increasing on
the interval I.
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& Example 3.

Determine the intervals of monotonicity of the function
f(z) =122 — 222,
Solution.
flz)=12 -4z =43 —2)=0 for z=3;

f(z)>0 for x <3; f(z) <0 for x > 3.
The function is increasing on (—oc, 3) , decreasing on (3, co).
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Local (relative) extremes

Definition 4. A function f has a local (relative) maximum,
resp. local (relative) minimum at =, € Dy if and only if
there exists a punctured neighbourhood P(z;) such that
f(z) < f(xo), resp. f(x) > f(xo), forall z € P(xy).

If we replace unstrict inequalities by strict ones, we speak
on strict local maximum, resp. strict local minimum.

Local maximas a minimas are also called local extremes,
strict maximas and minimas are called strict local extre-
mes of a function f.
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Theorem 7. Let x, € D, be not a boundary point of the domain
Dy of a function f . If f'(a) # 0, then f does not have an extreme
at Zo -

Proof. Let f'(x¢) = A # 0. Then for every ¢ > 0 there exists 6 > 0

such that
A—e< M <A+e.
r—a
for all x € Ps(x). Suppose for example that A > 0 and consider
€= g Then
A _ f@) - f()
2 r—a
for all x € Ps(zy). Further, f(z) > f(a) for z > a and f(x) < f(a)
for x < a. The function f therefore does not have a local extreme
at xo.
Similarly for A < 0. O

0<

Calculus 1 © Magdalena Hyksova, CTU in Prague

15



Remark. The fact that f'(z) > 0 or f'(z) < 0 does not imply that
f is increasing or decreasing on some neighbourhood of .

& Example 4.

Consider a function f(z) = z + w2?sin 1 prox # 0; f(0) = 0.

T
Obviously, f/(0) = 1, but the function is not increasing on any
neighbourhood of x = 0, because for sufficiently high n € N it is

f(ﬁ)”(ﬁ)'

Calculus 1 © Magdalena Hyksova, CTU in Prague

16



Theorem 8. Let f be a differentiable function, let f'(xy) = 0.
If there exists Ps(xq) such that

f'(x) >0 forz < zq and f'(x) < 0 forx > o, x € Ps(xy),
then [ has a strict local maximum at x.

If there exists Ps(xq) such that

f'(x) <0 forz < xyand f'(x) >0 forx > xg, x € Ps(xo),
then f has a strict local minimum at x.

If there exists Ps(xy) such that f'(z) < 0 or f'(x) > 0 for all x €
Ps(x), then f does not have a local extreme at x.
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& Example 5.

Find local extremes of

f(z) =122 — 222,

Solution.
fl(x)=12—4x =43 —2)=0 for x=3;

f(x) >0 for x <3; f(z)<0 for x > 3.
f is increasing on (—o0, 3), decreasing on (3,00), thus it has a
strict local maximum at 3, namely 18.
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Global extremes

Sometimes we need to find global extremes on a compact, i.e.,
bounded and closed set M. The Weierstrass theorem implies
that if a function f(z) is continuous, then there exist poitsin M in
which f(z) attains its maximal and minimal value. Obviously, if x
is not a boundary point of M and f'(x) # 0, then f does not have
a global extreme at x. It is therefore sufficient to investigate the
remaining points of M :

e boundary points of M
e points where the derivative is equal to zero
e points where the derivative does not exist

It there exist only a finite number of such points, it is sufficient
to compare their function values and select maximum and mini-
mum.
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& Example 6.

Find global extremes of a function

f(x) = |2 — 32|,z € (=2v/3,V3).

Solution. f is continuous on a compact interval (—2+/3,/3), glo-
bal minimum and maximum exist.

Candidates:
e Boundary points, i.e., —2v/3 a V3
e f'(x) does not exist for —/3, 0 and v/3
o f'(x)=0for—1,1
Now it is sufficient to find and compare function values:
F(=2V3) = 18V3, f(V3) = f(=V3) = f(0) =0,
F(=1) = f(1) = 2.

f attains a global maximum 18v/3 at —21/3 and global minimum

0at —v/3, V3 and 0.
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Convex and concave functions,
inflex points

Definition 5. Let f'(xy) exist. We say that f is convex,
resp. concave at z, if and only if there exists U(z; d) such
that the graph of f lies above, resp. below a tangent z, for
all z € U(z;0).

A function f is called convex, resp. concave on an iterval
(a,b) if and only if it is convex, resp. concave at each point
of (a,b).

A point z, € Dy is called an inflex point of f if and only if
there exists a tangent to its graph at (zo, f(zo)) such that f
changes from convex to concave or vice versa at this point.
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Theorem 9. Let f : (a,b) — R have a derivative on (a,b). Then
(i) If f is increasing on (a,b), then f
is convex on (a,b).

(ii) If f" is decreasing on (a,b), then f
is concave on (a,b).

(iii) If f" has a local extreme at xy € (a,b), then x, is an

inflex point of f .
Thus:
Theorem 10. Let f : (a,b) — R have a second derivative on
(a,b). Then:

(i) Iff"(x) >0 forall x € (a,b), then f is convex on (a,b).
(i) If f"(z) <0 forall z € (a,b), then f concave on (a,b).

(iii) If f"(xzo) = 0 and " changes a sign at x, € (a,b), then
f hax an inflex point at .
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