Exercise 6 - Monotonicity

Find the intervals of monotony and local extremes of a function $f(x) = \frac{x^2 - 3x + 2}{(x+1)^2}$.

[increasing in the intervals $(-\infty, -1)$ and $(\frac{7}{5}, +\infty)$; decreasing in the interval $(-1, \frac{7}{5})$; local minimum $-\frac{1}{24}$ in a point $x = \frac{7}{5}$.

Find the intervals of monotony and local extremes of a function $f(x) = \frac{x^2 + 4x + 3}{(x-2)^2}$.

decreasing in the intervals $\left(-\infty, -\frac{7}{4}\right)$ and $\left(2, +\infty\right)$; increasing in the interval $\left(-\frac{7}{4}, 2\right)$; local minimum $-\frac{1}{15}$ in a point $x = -\frac{7}{4}$.

Find the intervals of monotony and local extremes of a function $f(x) = \sqrt{x - x^2}$.

[increasing in the interval $\langle 0, \frac{1}{2} \rangle$; decreasing in the interval $(\frac{1}{2}, 1)$; local maximum $\frac{1}{2}$ in a point $x = \frac{1}{2}$.

Find the intervals of monotony and local extremes of a function $f(x) = x\sqrt[3]{1-x}$.

[increasing in the interval $\left(-\infty, \frac{3}{4}\right)$; decreasing in the interval $\left(\frac{3}{4}, +\infty\right)$; local maximum $\frac{3}{8}\sqrt[3]{2}$ in a point $x = \frac{3}{4}$.

Find the intervals of monotony and local extremes of a function $f(x) = \sqrt{x} \ln x$.

[decreasing in the interval $(0, e^{-2})$; increasing in the interval $(e^{-2}, +\infty)$; local minimum $-2e^{-1}$ in a point $x = e^{-2}$.

Find the intervals of monotony and local extremes of a function $f(x) = \frac{\ln^2 x}{x}$.

decreasing in the intervals (0,1) and $(e^2, +\infty)$; increasing in the interval $(1, e^2)$; local minimum 0 in a point x = 1; local maximum $4e^{-2}$ in a point $x = e^2$.

Find the intervals of monotony and local extremes of a function $f(x) = x \ln^2 x$.

increasing in the intervals $(0, e^{-2})$ a $(1, +\infty)$; decreasing in the interval $(e^{-2}, 1)$; local maximum $4e^{-2}$ in a point $x = e^{-2}$; local minimum 0 in a point x = 1.

Find the intervals of monotony and local extremes of a function $f(x) = \sqrt[3]{1-x^3}$.

[decreasing in \mathbb{R} ; does not have local extremes.]

Find the intervals of monotony and local extremes of a function $f(x) = \ln \frac{3-x}{|x+5|}$.

[increasing in the intervals $(-\infty, -5)$ and (-5, 3); does not have local extremes.]

Find the intervals of monotony and local extremes of a function $f(x) = \arctan x - \ln \sqrt{1+x^2}$.

1

```
[increasing in the interval (-\infty, 1); decreasing in the interval (1, +\infty); local maximum \frac{1}{4}\pi - \ln \sqrt{2} in a point x = 1.
```

Find the intervals of monotony and local extremes of a function $f(x) = x^3 e^{-x}$.

increasing in the interval $(-\infty, 3)$; decreasing in the interval $(3, +\infty)$; local maximum $27e^{-3}$ in a point x = 3.

Find the intervals of monotony and local extremes of a function $f(x) = \frac{4}{x} + \frac{1}{1-x}$.

decreasing in the intervals $(-\infty, 0)$, $(0, \frac{2}{3})$ a $(2, \infty)$; increasing in the intervals $(\frac{2}{3}, 1)$ a (1, 2); local minimum 9 in a point $x = \frac{2}{3}$; local maximum 1 in a point x = 2.

Find the intervals of monotony and local extremes of a function $f(x) = \ln x + \frac{1}{x^2}$

decreasing in the interval $(0, \sqrt{2})$; increasing in the interval $(\sqrt{2}, +\infty)$; local minimum $\frac{1}{2}(1 + \ln 2)$ in a point $x = \sqrt{2}$.

Find the intervals of monotony and local extremes of a function $f(x) = xe^{-x^2+x}$.

decreasing in the intervals $(-\infty, -1)$ a $(\frac{1}{2}, +\infty)$; increasing in the interval $(-1, \frac{1}{2})$; local minimum $-e^{-2}$ in a point x = -1, local maximum $\frac{1}{2}\sqrt[4]{e}$ in a point $x = \frac{1}{2}$.

Find the intervals of monotony and local extremes of a function $f(x) = (x-3)^2 e^{|x|}$.

decreasing in the intervals $(-\infty, 0)$ and (1, 3); increasing in the intervals (0, 1) and $(3, +\infty)$; local minimum 9 in a point x = 0; local maximum 4e in a point x = 1; local minimum 0 in a point x = 3.

Find the intervals of monotony and local extremes of a function $f(x) = xe^{-\sqrt{x}}$.

[increasing in the interval (0,4); decreasing in the interval $(4,+\infty)$; local maximum $4e^{-2}$ in a point x=4.

Find intervals in which the function $f(x) = \frac{x}{1+x^2}$ is convex and concave, respectively, and determine inflex points of this function.

concave in the intervals $(-\infty, -\sqrt{3})$ and $(0, \sqrt{3})$; convex in the intervals $(-\sqrt{3}, 0)$ and $(\sqrt{3}, +\infty)$; inflex points: $x = \pm \sqrt{3}$ and x = 0.

Find intervals in which the function $f(x) = \frac{x}{1-x^2}$ is convex and concave, respectively, and determine inflex points of this function.

convex in the intervals $(-\infty, -1)$ a (0, 1); concave in the intervals (-1, 0) a $(1, +\infty)$; inflex point x = 0. Find intervals in which the function $f(x) = \ln(1+x^3)$ is convex and concave, respectively, and determine inflex points of this function.

```
[concave in the intervals (-1,0) a (\sqrt[3]{2},+\infty); convex in the interval (0,\sqrt[3]{2}); inflex points: x=0 and x=\sqrt[3]{2}.
```

Find intervals in which the function $f(x) = x \sin(\ln x)$ is convex and concave, respectively, and determine inflex points of this function.

```
concave in the intervals (e^{(1/4+2k)\pi}, e^{(5/4+2k)\pi}), k \in \mathbb{Z}; convex in the intervals (e^{(5/4+2k)\pi}, e^{(9/4+2k)\pi}), k \in \mathbb{Z}; inflex points x = e^{(1/4+k)\pi}, k \in \mathbb{Z}.
```

Find intervals in which the function $f(x) = \frac{x}{\ln x}$ is convex and concave, respectively, and determine inflex points of this function.

```
concave in the intervals (0,1) and (e^2, +\infty); convex in the interval (1, e^2); inflex point x = e^2.
```

Find intervals in which the function $f(x) = e^{\sqrt[3]{x}}$ is convex and concave, respectively, and determine inflex points of this function.

```
convex in the intervals (-\infty, 0) and (8, +\infty); concave in the interval (0, 8); inflex points: x = 0 and x = 8.
```

Find intervals in which the function $f(x) = \ln \frac{|x-1|}{x+3}$ is convex and concave, respectively, and determine inflex points of this function.

```
convex in the interval (-3, -1); concave in the intervals (-1, 1) and (1, +\infty); inflex point x = -1.
```

Find intervals in which the function $f(x) = \frac{\ln x}{x}$ is convex and concave, respectively, and determine inflex points of this function.

```
concave in the interval (0, e^{3/2}); convex in the interval (e^{3/2}, +\infty); inflex point x = e^{3/2}.
```

Find intervals in which the function $f(x) = \ln x + \frac{1}{x}$ is convex and concave, respectively, and determine inflex points of this function.

```
convex in the interval (0,2); concave in the interval (2,+\infty); inflex point x=2.
```

Find intervals in which the function $f(x) = x \ln^2 x$ is convex and concave, respectively, and determine inflex points of this function.

concave in the interval $(0, e^{-1})$; convex in the interval $(e^{-1}, +\infty)$; inflex point $x = e^{-1}$.

Find the equation of a tangent to the graph of the function $f(x) = \ln(1+x^2)$ in its inflex points.

$$[x-y-1+\ln 2=0 \text{ in a point } [1;\ln 2]; x+y+1-\ln 2=0 \text{ in the point } [-1;\ln 2].]$$

Find the equations of tangents to the graph of the function $f(x) = \frac{\ln x}{x}$ in its inflex points.

$$\left[x + e^3y - 2e^{3/2} = 0 \text{ in the point } \left[e^{3/2}; \frac{3}{2}e^{-3/2}\right].\right]$$

Find the equations of the tangent to the graph of the function $f(x) = \ln x + \frac{1}{x}$ in its inflex points.

$$\left[x - 4y + 4 \ln 2 = 0 \text{ in the point } \left[2; \frac{1}{2} + \ln 2\right].\right]$$

Find the set of all $x \in \mathbb{R}$ such that the function $f(x) = 2x^2 + \ln|x|$ is increasing and concave at the same time. $\left[x \in \left(0, \frac{1}{2}\right).\right]$

Find the set of all $x \in \mathbb{R}$ such that the function $f(x) = \sqrt[3]{x^2 - 6x}$ is increasing and convex at the same time. $x \in (3,6)$.

Find the smallest and the greatest value of the function $f(x) = \frac{x^2 - 3x + 2}{(x+1)^2}$ on the interval (0,4).

[maximum 2 for
$$x = 0$$
; minimum $-\frac{1}{24}$ for $x = \frac{7}{5}$.]

Find the smallest and the greatest value of the function $f(x) = \frac{x^2 + 4x + 3}{(x-2)^2}$ on the interval $\langle -4, 1 \rangle$.

$$\left[\text{maximum 8 for } x = 1; \text{ minimum } -\frac{1}{15} \text{ for } x = -\frac{7}{4}.\right]$$

Find the smallest and the greatest value of the function $f(x) = (x-1)^2 e^{-|x|}$ on the interval $\langle -3, 2 \rangle$.

$$\left[\text{maximum } 4\mathrm{e}^{-1} \text{ for } x = -1; \text{minimum } 0 \text{ for } x = 1 \, . \right]$$

Find the smallest and the greatest value of the function $f(x) = (x+1)^2 e^{|x-1|}$ on the interval $\langle -2, 3 \rangle$.

$$\[\text{maximum } 16e^2 \text{ for } x = 3; \text{ minimum } 0 \text{ for } x = -1. \]$$

Find the smallest and the greatest value of the function $f(x) = \ln x + \frac{2}{x}$ on the interval $\langle 1, e^2 \rangle$.

maximum
$$2 + 2e^{-1}$$
 for $x = e^2$; minimum $1 + \ln 2$ for $x = 2$.

Find the smallest and the greatest value of the function $f(x) = \operatorname{arccotg} |x^2 - 2x - 8|$ on the interval $\langle -3, 2 \rangle$. $\left[\operatorname{maximum arccotg} 0 = \frac{1}{2} \pi \text{ for } x = -2; \operatorname{minimum arctg} 9 \text{ for } x = -2; \right]$

$$x = 1$$
.

Find the smallest and the greatest value of the function $f(x) = \sqrt[3]{x^2 - x^3}$ on the interval $\langle -1, 2 \rangle$.

$$\left[\text{maximum } \sqrt[3]{2} \text{ for } x = -1, \text{ minimum } -\sqrt[3]{4} \text{ for } x = 2. \right]$$

Find the smallest and the greatest value of the function $f(x) = x - |\sin 2x|$ on the interval $(0, \pi)$.

$$\left[\text{maximum } \pi \text{ for } x = \pi, \text{ minimum } \frac{\pi}{6} - \frac{\sqrt{3}}{2} \text{ for } x = \frac{\pi}{6} . \right]$$

Find the smallest and the greatest value of the function $f(x) = x + |\sin 2x|$ on the interval $\langle -\frac{1}{2}\pi, \frac{1}{2}\pi \rangle$.

$$\left[\text{maximum } \frac{\pi}{3} + \frac{\sqrt{3}}{2} \text{ for } x = \frac{\pi}{3}, \text{ minimum } -\frac{\pi}{2} \text{ for } x = -\frac{\pi}{2}. \right]$$

Find the smallest and the greatest value of the function $f(x) = |e^{-x} \sin x|$ on the interval $\langle 0, 2\pi \rangle$.

$$\left[\text{maximum }\frac{1}{\sqrt{2}}\,\mathrm{e}^{-\pi/4} \text{ for } x=\frac{\pi}{4}, \text{ minimum } 0 \text{ in the points } x=0, \, x=\pi \text{ and } x=2\pi.\right]$$

Find the smallest and the greatest value of the function $f(x) = |e^{-x} \cos x|$ on the interval $\langle -\pi, \pi \rangle$.

$$\left[\text{maximum } \mathbf{e}^{\pi} \text{ for } x = -\pi, \text{ minimum } 0 \text{ for } x = \pm \frac{\pi}{2}.\right]$$

Find the smallest and the greatest value of the function $f(x) = x \ln^2 x$ on the interval $\langle e^{-3}, e \rangle$.

maximum e for
$$x = e$$
; minimum 0 for $x = 1$.

Find the smallest and the greatest value of the function $f(x) = 2x + e^{-x}$ on the interval $\langle -2, 3 \rangle$.

[maximum
$$6 + e^{-3}$$
 for $x = 3$; minimum $2(1 - \ln 2)$ for $x = -\ln 2$.]

Find the smallest and the greatest value of the function $f(x) = \frac{\ln^2 x}{x}$ in the interval $\langle e, e^3 \rangle$.

$$\left[\text{maximum } 4\mathrm{e}^{-2} \text{ for } x = \mathrm{e}^2; \text{ minimum } \mathrm{e}^{-1} \text{ for } x = \mathrm{e}\,.\right]$$

Find the smallest and the greatest value of the function $f(x) = x \sin(\ln x)$ on the interval $\langle 1, e^{\pi} \rangle$.

 $\left[\text{maximum } \frac{1}{\sqrt{2}} \, \mathrm{e}^{3\pi/4} \text{ for } x = \mathrm{e}^{3\pi/4}; \text{ minimum } 0 \text{ for } x = 1 \text{ and } x = \mathrm{e}^{\pi}.\right]$

For which number x is the sume of it with its second power minimal? $x = \int x^2 dx$

For which positive number x is the sume of it with its inverse value $\frac{1}{x}$ minimal?

x = 1.

For which positive number x is its difference with its second root minimal?

 $\left[x = \frac{1}{4} \, .\right]$

Determine the numbers $x, y \in (0,1)$ such that x+y=1 and the value of x^2y^3 is maximal.

$$\left[x = \frac{2}{5} \text{ and } y = \frac{3}{5}.\right]$$

Find a point on the hyperbole $\frac{1}{2}x^2 - y^2 = 1$ that is closest to the point A = [3; 0].

points
$$[2;1]$$
 and $[2;-1]$.

Which rectangle inscribed to the semicircle with the radius R has the greatest area?

sides of the rectanle:
$$\sqrt{2} R$$
 and $\frac{1}{\sqrt{2}} R$.

Find the block with the square base that has the given volume V and the smallest surface.

[cube with the edge
$$\sqrt[3]{V}$$
.]

Which cylinder with the given volume V has the smallest surface?

[radius of the base:
$$r=\sqrt[3]{\frac{V}{2\pi}},$$
 height: $h=\sqrt[3]{\frac{4V}{\pi}}=2r$.]

Which cylinder with the given surface S has the greatest volume?

[radius of the base:
$$r = \sqrt{\frac{S}{6\pi}}$$
, height $h = \sqrt{\frac{2S}{3\pi}} = 2r$.]

Find the right-angled triangle with the greatest area in which the sum of the length of the hypothenuse and one cathete is equal to one. $\left[a=\frac{1}{3},\,b=\frac{1}{\sqrt{3}},\,c=\frac{2}{3}\,.\right]$