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Taylor’s Formula for f (x, y) at the Point (a, b)
..

......

Theorem. Suppose f (x, y) and its partial derivatives through order
n + 1 are continuous throughout an open rectangular region R
centered at a point (a, b). Then, throughout R,
f (a + h, b + k) = f (a, b) + (hfx + kfy)|(a,b)︸ ︷︷ ︸

Linear or 1st order approximation

+ · · ·

f (a + h, b + k)

= f (a, b) + (hfx + kfy)|(a,b) +
1
2!
(h2fxx + 2hkfxy + k2fyy)|(a,b)︸ ︷︷ ︸

2nd order approximation

+ · · ·

f (a + h, b + k)
= f (a, b) + (hfx + kfy)|(a,b) +

1
2! (h

2fxx + 2hkfxy + k2fyy)|(a,b)

+ 1
3! (h

3fxxx + 3h2kfxxy + 2hk2fxyy + k3fyyy)|(a,b) + · · ·

+ 1
n!

(
h ∂

∂x + k ∂
∂y

)n
f |(a,b) +

1
(n+1)!

(
h ∂

∂x + k ∂
∂y

)n+1
f |(a+ch,b+ck)

for some c ∈ (0, 1).
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Taylor’s Theorem. Suppose f (x, y) and its partial derivatives through
order n + 1 are continuous throughout an open rectangular region R
centered at a point (a, b). Then, throughout R,
= f (a, b) + (hfx + kfy)|(a,b) +

1
2! (h

2fxx + 2hkfxy + k2fyy)|(a,b)

+ 1
3! (h

3fxxx + 3h2kfxxy + 2hk2fxyy + k3fyyy)|(a,b) + · · ·

+ 1
n!

(
h ∂

∂x + k ∂
∂y

)n
f |(a,b) +

1
(n+1)!

(
h ∂

∂x + k ∂
∂y

)n+1
f |(a+ch,b+ck)

for some c ∈ (0, 1).

.

......

Remarks.
...1 The proof just applies the chain rule and the trick of n-th Taylor

polynomial to the function g(t) = f (a + ht, b + kt) one variable.
...2 If one have an estimate the last term (in blue), for example an

upper bound, then we can estimate the given function by means
of polynomials in 2 variables.

...3 The theorem can be easily generalized to function of n variables
for n ≥ 1. Though this topics is not treated in this book, but its
application is important in other courses, so we put the result in
this notes for the sake of students.
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Definition. The definite integral of a function f (x) of one variable
defined on an interval [a, b], is given by∫ b

a
f (x) dx = lim

max ∆xk→0

n

∑
k=1

f (x∗k )∆xk = lim
n→+∞

n

∑
k=1

f (x∗k )∆xk.

This concept arose from the problem of finding areas under curves.
Now we have similar problem if we replace the function of two
variables.
.

......

Volume Problem. Given a function f (x, y) of two variables that is
continuous and nonnegative on a region R in the xy-plane, find the
volume of the solid enclosed between the surface z = f (x, y) and the
region R.

Math 200 in 2011
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Volume and Double Integrals
..

......

Let f (x, y) be a function of two variables defined over a rectangle
R = [a, b]× [c, d]. We would like to define the double integral of f (x, y)
over R as the algebraic volume of the solid under the graph of
z = f (x, y) over R.

The idea is similar to the case of integral
∫ b

a f (x)dx in one variable
case, in which we subdivide the interval into smaller subintervals with
uniform width ∆x = b−a

n , and then choose arbitrary points xi in the
subinterval Ii. Then we have the approximate Riemann sum

n

∑
i=1

f (xi)∆x.

Of course, this sum depends on the choices of xi and the subinterval.
In fact, this idea can be implemented in 2-dimensional cases as well.
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Let R = [a, b]× [c, d]. and f (x, y) be a function defined on R. We first
subdivide the rectangle R into mn small rectangles Rij, each having
area ∆A, where i = 1, · · · , m and j = 1, · · · , n. For each pair (i, j), pick
an arbitrary point (xij, yij) inside Rij. Use the value f (xij, yij) as the
height of a rectangular solid erected over Rij. Thus its volume is
f (xij, yij)∆A.

The sum of the volume of all these small rectangular solids
approximates the volume of the solid under the graph of z = f (x, y)

over R. This sum
m

∑
i=1

n

∑
j=1

f (xij, yij)∆A is called Riemann sum of f .

.

......

Definition The double integral of f over R is∫∫
R

f (x, y) dA = lim
m,n→∞

m

∑
i=1

n

∑
j=1

f (xij, yij)∆A, if this limit exists.
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Remarks. In general, it is very difficult to prove that the limit of
Riemann sum converges, because of the choices of the height
f (xij, yih) involved. The usual method is replace the height either the
maximum and the minimum values of f within each smaller
rectangles, and hence we obtain the upper and lower Riemann sums
respectively.
.

......

Theorem. If f (x, y) is continuous on a domain containing the

rectangle R, then the double integral
∫∫

R
f (x, y) dA always exists.

Math 200 in 2011
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Example. Approximate the value of the integral
∫∫

R
(4x3 + 6xy2) dA

over the rectangle R = [1, 3]× [−2, 1], by means of the Riemann
sums, with ∆xi = 1, and ∆yj = 1.

Solution. Partition the rectangle R into six 1 × 1
squares Ri with area ∆Ai = 1 (i = 1, · · · , 6).
Choose the center points (x∗i , y∗i ) for each square
as shown on the right.

The desired Riemann sum is
6

∑
i=1

f (x∗i , y∗i )∆Ai

= f ( 3
2 ,− 3

2 )× 1 + f ( 5
2 ,− 3

2 )× 1 + f ( 3
2 ,− 1

2 )× 1
+f ( 5

2 ,− 1
2 )× 1 + f ( 3

2 , 1
2 )× 1 + f ( 5

2 , 1
2 )× 1

=
135

4
+

385
4

+
63
4

+
265
4

+
63
4

+
265
4

= 294,
which is called the midpoint approximation of the integral∫∫

R
(4x3 + 6xy2) dA.
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Iterated Integrals
..

......

Let f (x, y) be a function defined on R = [a, b]× [c, d]. We write∫ d

c
f (x, y) dy to mean that x is regarded as a constant and f (x, y) is

integrated with respect to y from y = c to y = d.

.

......

Therefore, the value of the integral
∫ d

c
f (x, y) dy is a function of x, and

we can integrate it with respect to x from x = a to x = b. The resulting

integral
∫ b

a

(∫ d

c
f (x, y) dy

)
dx is called an iterated integral.

kk
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Iterated Integrals
..

......

Let f (x, y) be a function defined on R = [a, b]× [c, d]. We write∫ d

c
f (x, y) dy to mean that x is regarded as a constant and f (x, y) is

integrated with respect to y from y = c to y = d.

.

......

Therefore, the value of the integral
∫ d

c
f (x, y) dy is a function of x, and

we can integrate it with respect to x from x = a to x = b. The resulting

integral
∫ b

a

(∫ d

c
f (x, y) dy

)
dx is called an iterated integral. Similarly

one can define the iterated integral
∫ d

c

(∫ b

a
f (x, y) dx

)
dy.

Remark. We call the blue and red segments inside the region R the
cross-sections of R cut by the line y = y0 and x = x0 respectively.

Math 200 in 2011



. . . . . .

.

......

Example. Evaluate the iterated integrals

(a)
∫ 3

0

∫ 2

1
x2y dy dx, (b)

∫ 2

1

∫ 3

0
x2y dx dy.

Solution.

(a)
∫ 3

0

∫ 2

1
x2y dydx =

∫ 3

0

∫ 2

1
x2y dydx =

∫ 3

0
x2
∫ 2

1
y dydx ==∫ 3

0
x2
[

y2

2

]y=2

y=1
dx =

∫ 3

0

3x2

2
dx =

[
x3

2

]x=3

x=0
=

27
2

.

(b)
∫ 2

1

∫ 3

0
x2y dx dy =

∫ 2

1

[
x3y
3

]x=3

x=0
dy =

∫ 2

1
9ydy =

[
9y2

2

]y=2

y=1
=

27
2

.
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Fubini’s Theorem for Rectangle case
..

......

Thoerem. If f (x, y) is continuous on R = [a, b]× [c, d], then∫ b

a

∫ d

c
f (x, y) dy dx =

∫∫
R

f (x, y)dA =
∫ d

c

∫ b

a
f (x, y) dx dy.

.

......

Example. f (x, y) is a positive function defined on a rectangle
R = [a, b]× [c, d]. The volume V of the solid under the graph of
z = f (x, y) over R, is given by either one of the iterated integrals:∫ b

a

∫ d

c
f (x, y) dy dx, or

∫ d

c

∫ b

a
f (x, y) dx dy.
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Proof of Fubini Theorem for rectangle case
..

......

Thoerem. If f (x, y) is continuous on R = [a, b]× [c, d], then∫ b

a

∫ d

c
f (x, y) dy dx =

∫∫
R

f (x, y)dA =
∫ d

c

∫ b

a
f (x, y) dx dy.

Proof. First partition [a, b], and [c, d] each into n equal subintervals, so
that we have n2 smaller rectangles of area ∆A = ∆x∆y. We construct
a Riemann sum of f on R which is close to the iterated integral. For
i = 1, · · · , n, one can choose any point x∗i in subinterval [xi−1, xi]. It
follows from the mean value theorem of integral that there exists y∗ij in

subinterval [yj−1, yi] with
∫ yj

yj−1

f (x∗i , y)dy = f (x∗i , y∗ij)∆y. This produces

a point (x∗i , y∗ij) in each rectangle [xi−1, xi]× [yj−1, yi]. Then the

Riemann sum
n

∑
i,j=1

f (x∗i , y∗ij)∆A =
n

∑
i=1

(
n

∑
j=1

f (x∗i , y∗ij)∆y

)
∆x =

n

∑
i=1

(
n

∑
j=1

∫ yi

yi−1

f (x∗i , y)dy

)
∆x =

n

∑
i=1

(∫ d

c
f (x∗i , y) dy

)
∆x =

n

∑
i=1

A(x∗i )∆x,

where A(x) =
∫ d

c f (x, y) dy. The result follows as n tends to +∞.
Math 200 in 2011
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Fubini’s Theorem for Rectangle case
..

......

Thoerem. If f (x, y) is continuous on R = [a, b]× [c, d], then∫ b

a

∫ d

c
f (x, y) dy dx =

∫∫
R

f (x, y)dA =
∫ d

c

∫ b

a
f (x, y) dx dy.

.

......

More generally, this is true if f is bounded on R, f is discontinuous only
at a finite number of smooth curves, and the iterated integrals exist.

Furthermore, the theorem is valid for a general closed and bounded
region as discussed in the subsequent sections.
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Example. Find the volume of the solid S that is bounded by the elliptic
paraboloid x2 + 2y2 + z = 16, the planes x = 2, y = 2, and the 3
coordinate planes.

Solution. Let R = { (x, y) 0 ≤ x ≤ 2, 0 ≤ y ≤ 2 }, and one can rewrite
the defining equation of the elliptic paraboloid as z = 16 − x2 − 2y2

where (x, y) ∈ R. Then the volume of S is given by the double integral∫∫
R

f (x, y) dA =
∫ 2

0

∫ 2

0
(16 − x2 − 2y2) dx dy

=
∫ 2

0

[
16x − x3

3
− 2xy2

]x=2

x=0
dy

=
∫ 2

0
(

88
3

− 4y2) dy =
88 × 2

3
− 4 × 22

3
=

160
3

.

Remark. In this problem, one has to decide which is the height
function, just like z = f (x, y) in the previous formulation. In some other
cases, one can use x = h(y, z) or y = g(x, z) as the height function.
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Proposition. (a) In general, if f (x, y) = g(x)h(y), then∫∫
R

f (x, y)dA =

(∫ b

a
g(x) dx

)(∫ d

c
h(y) dy

)
,

where R = [a, b]× [c, d] is a rectangle.
(b) The equation above does not hold if the region R is not a
rectangle.

Solution. (a)
∫∫

R
f (x, y)dA =

∫ b

a

∫ d

c
g(x)h(y)dy dx =∫ b

a
g(x)

∫ d

c
h(y)dy dx =

(∫ b

a
g(x) dx

)(∫ d

c
h(y) dy

)
.

.

......

Remark. Example. exp(x2 + y2) = ex2+y2
= ex2 · ey2

.
Counterexample. One can show that sin(x + y) can not be expressed
as g(x) · h(y). However, one can relax the condition into sums of
products of functions: sin(x + y) = sin x · cos y + cos x · sin y.
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.. Double Integral over Non-Rectangular Region
.

......

Let f (x, y) be a continuous function
defined on a closed and bounded region
D in R2. The double integral∫∫

D
f (x, y) dA can be defined similarly as

the limit of a Riemann sum
∑
k

f(xk, yk)∆Ak, where small rectangle Rk

with dimension ∆xk × ∆yk lies completely
inside region R.

However, due to the irregular shapes of
the region, we subdivide the region by
rectangular grid, and then evaluate the
volume of the rectangular solid with the
base of smaller rectangles the complete-
ly lies inside the region R.
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Example. If R = { (x, y) | − 1 ≤ x ≤ 1, − 2 ≤ y ≤ 2 }, evaluate the

double integral
∫∫

R

√
1 − x2dA.

Solution. We can compute the integral by interpreting it as a volume
of a solid body D. If we let z =

√
1 − x2, then z2 = 1 − x2, i.e.

x2 + z2 = 1, hence part of the boundary of D lies in the cylinder. ,
then and , so the given double integral represents the volume of the
solid S that lies below the circular cylinder and above the rectangle R.
The volume of S is the area of a semicircle with radius 1 times the
length of the cylinder. Thus∫∫

R

√
1 − x2dA = Volume of S =

1
2

π × 12 × (2 − (−2)) = 2π.
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Fubini theorem for non-rectangular region
..

......

Let R be a region in the xy-plane, and suppose there exist two
continuous function ymin(x), ymax(x) defined on the interval [a, b]
such that R = { (x, y) | a ≤ x ≤ b, ymin(x) ≤ y ≤ ymax(x) }, then∫∫

R
f (x, y) dA =

∫ b

a

∫ ymax(x)

ymin(x)
f (x, y) dy dx.

.
Using Vertical Cross-sections
..

......

In evaluating
∫∫

R f (x, y)dA, one can ideally use the iterated integral

∫∫
R

f (x, y)dA =
∫ b

a

(∫ ∗

?
f (x, y) dy

)
dx,

the difficulties lies in determining upper and lower limits ∗, ? in the
iterated integral.
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Vertical Cross-sections
..

......

∫∫
R

f (x, y)dA =
∫ b

a

(∫ ∗

?
f (x, y) dy

)
dx.

We propose the following steps:
...1 Sketch and label the bounding curves, and determine the region

R of integration in the double integral.
...2 Project the region R onto one the coordinate axes, so that its

shadow is an interval [a, b] or union of intervals on the coordinate
axis.

...3 Choose any arbitrary point P(x, 0) or P(0, y) in the shadow, draw
a line ℓ through P perpendicular to the axis with shadow.

...4 Ideally the line ℓ meets the boundary R at only two points
(x, ymax) and (x, ymin). These two y’s depends on x, and hence
are functions of x, i.e. the ones determined by the boundary
curves of R. In this case one can describe the region
R = { (x, y) ∈ R2 | a ≤ x ≤ b, ymin(x) ≤ y ≤ ymax(x) }.
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Example. Sketch the region D bounded by
the lines x = 0, y = 0 and 2x + 3y = 1. and

evaluate the double integral
∫∫

D
x dA.

Solution. The region D is a triangle bounded
by x = 0 and y = 0 and ℓ : 2x + 3y = 1. First
we determine the intersection points of these

3 lines. The two coordinates axes meet at (0, 0); the line ℓ intersects
the x- and y-axis at (1/2, 0) and (0, 1/3) respectively. Next we
determine the order of integration in the iterated integral, for example∫ b

a
(
∫

dy)dx. Then the region D has a shadow

{ x | 0 ≤ x ≤ 1/2 } on x-axis. Then any vertical red line through a
point (x, 0) on the x-axis will intersect the region at two boundary
points (x, ymax) and (x, ymin), where ymin = 0 given by the x-axis, and
ymax = y which satisfies 2x + 3y = 1, i.e. ymax = 1−2x

3 . So we have∫∫
D

xdA =
∫ 1

2

0

∫ 1−2x
3

0
x dy dx =

∫ 1
2

0

x(1 − 2x)
3

dx =
[

x2

6 − 2x3

9

] 1
2

0
= 1

72 .
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Example. Let R be the region in first quadrant bounded by the two
curves x2 + y2 = 1 and x + y = 1.

...1 Sketch and label the bounding curves, and determine the region
R of integration in the double integral.

...2 Project the region R onto one the coordinate axes, so that its
shadow is an interval [a, b] or union of intervals on the coordinate
axis.
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Example. Let R be the region in first quadrant bounded by the two
curves x2 + y2 = 1 and x + y = 1.

Usually the intersection point of curves C1 : x + y = 1 and
C2 : x2 + y2 = 1 gives some important information.
1 = x2 + y2 = x2 + (1 − x)2 = 2x2 − 2x + 1, i.e. 0 = x(x − 1), and
hence we know (x, y) = (1, 0) and (0, 1) are the common intersection.
Want to see (by mathematical means) the relative position of the
curves y = 1 − x and y =

√
1 − x2 when x varies in the interval [0, 1].

For 0 ≤ x ≤ 1, we have 0 ≤ 1 − x ≤ 1 + x, so

(1 − x)2 ≤ (1 + x)(1 − x) = 1 − x2,

it follows that 1 − x ≤
√

1 − x2 for 0 ≤ x ≤ 1, i.e. the line segment C2
is below the circle C2.
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Example. Let R be the region in first quadrant bounded by the two
curves x2 + y2 = 1 and x + y = 1. Rewrite the double integral∫∫

R
f (x, y)dA in iterated integrals.

...1 Choose any arbitrary point P(x, 0) or P(0, y) in the shadow, draw
a line ℓ through P perpendicular to the axis with shadow.

...2 Ideally the line ℓ meets the boundary R at only two points
(x, ymax) and (x, ymin). These two y’s depends on x, and hence
are functions of x, i.e. the ones determined by the boundary
curves of R. Then the region
R = { (x, y) ∈ R2 | a ≤ x ≤ b, ymin(x) ≤ y ≤ ymax(x) }.

Answer:
∫∫

R
f (x, y)dA

=∫ 1

0

∫ √
1−x2

1−x
f (x, y) dy dx
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Proposition. The area of a region R in xy-plane is given by

∫∫
R

dA.
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Example. Find the area of the region R bounded by the curves
C1 : y = x + 2, and C2 : y = x2 in the first quadrant. Answer in∫ ∫

· · · dydx.

Solution. It is observed from the figure above that
R = { (x, y) | 0 ≤ x ≤ 1, x2 ≤ y ≤ x } ♡. We
first find the intersection point (x, y) of C1 and C2. In
this case, both equations y = x and y = x2 hold, i.e.
x = x2, and so x = 0 or x = 0. It follows that (x, y) =
(0, 0) or (1, 1). As x runs along in the interval [0, 1],

i.e. 0 ≤ x ≤ 1, one needs to decide which of these two curves
Ci (i = 1, 2) lies on top, while the other is at the bottom. One can
compare the y-coordinates of the points (x, x) on C1, and (x, x2) on
C2, so it follows from 0 ≤ x ≤ 1 that x − x2 = x(1 − x) ≥ 0. We know
that C1 lies above C2 when x ∈ [0, 1]. So
R = { (x, y) | 0 ≤ x ≤ 1, x2 ≤ y ≤ x }. The area of the region R is

given by
∫ 1

0

∫ x

x2
dydx =

∫ 1

0
(x − x2) dx =

[
x2

2
− x3

3

]1

0
=

1
6

.
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Example. Sketch the region of integration for the integral∫ 2

0

∫ 2x

x2
(4x + 2) dy dx and write an equivalent integral with the order of

integration reversed.

Solution. It follows from the given it-
erated integral that the domain of in-
tegral R = { (x, y) | 0 ≤ x ≤ 2, x2 ≤
y ≤ 2x }. In this case, the top and
bottom curves intersect at (0, 0) and
(2, 4).So the region R has a shadow
T = [0, 4] onto y-axis. For any point
P(y, 0) (0 ≤ y ≤ 4) in the shadow T,

the red line ℓ parallel to x-axis will meet the parabola y = x2 at (
√

y, y)
and the straight line y = x + 2 at (y − 2, y). It follows from 0 ≤ y ≤ 4,
that y2 ≤ 4y, i.e. ymin = y/2 ≤ √

y = ymax. Geometrically, ℓ meets the
boundary curves at two points (xmin, y) and (xmax, y). One has
R = { (x, y) | 0 ≤ y ≤ 4, y

2 ≤ x ≤ √
y }. It follows that the∫ 2

0

∫ 2x

x2
(4x + 2) dy dx =

∫ 4

0

∫ √
y

y/2
(4x + 2) dx dy.
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Example. Find the area of the region R bounded by the curves
C1 : y = x + 2, and C2 : y = x2 in the 1st quadrant. Answer in integral

form
∫ ∫

· · · dydx.

Solution. The region R can be described by means of vertical section
as { (x, y) | − 1 ≤ x ≤ 2, x2 ≤ y ≤ x + 2 }. It follows from the
description of R that the area of the region R is given by∫ 2

−1

∫ x+2

x2
dy dx =

∫ 2

−1

[
y
]x+2

x2
dx =

∫ 2

−1
(x + 2 − x2) dx

=

[
x2

2
+ 2x − x3

3

]2

−1
=

9
2

.
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Example. Find the area of the region R bounded by the curves
C1 : y = x, and C2 : y = x2 in the 1st quadrant. Answer in integral

form
∫ ∫

· · · dxdy.

Solution. If one uses the cross sections parallel to x-axis, then we
have the diagram above, in which the lower limits may be on C1 if
y ≥ 1, and on C2 if 0 ≤ y ≤ 1. So one may divide the region R into two
subregions R1 and R2 as above. In fact,
R1 = { (x, y) | 0 ≤ y ≤ 1, −√

y ≤ x ≤ √
y }, and

R2 = { (x, y) | 1 ≤ y ≤ 4, y − 2 ≤ x ≤ √
y }. So it follows that area of

R is
∫∫

R
1 dA =

∫∫
R1

dA +
∫∫

R2

dA =
∫ 1

0

∫ √
y

−√
y

dxdy +
∫ 4

1

∫ √
y

y−2
dxdy.
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Example. Evaluate
∫∫

D
(x + 2y)dA, where D is the region bounded by

the parabolas y = 2x2 and y = 1 + x2.

Solution. We first determine the intersection
of the curves y = 2x2 and y = 1 + x2 as
follows. From 2x2 = y = 1 + x2, we have
x2 = 1, and hence x = ±1. When x varies
within the interval [−1, 1], one has x2 ≤ 1,
i.e. 2x2 ≤ 1 + x2. In particular, the curve
y = 2x2 is below the curve y = 1 + x2. So
D = { (x, y) | 0 ≤ x ≤ 1, 2x2 ≤ y ≤ 1 + x2 }.
And we have the figure on the right.

Rewrite the double integral as iterated integral,∫∫
D
(x + 2y)dA =

∫ 1

−1

∫ 1+x2

2x2
(x + 2y) dy dx =

∫ 1

−1

[
xy + y2

]1+x2

2x2
=∫ 1

−1
(−3x4 − x3 + 2x2 + x + 1) dx =

32
15

.

Exercise. Evaluate
∫∫

D xydA, where D is the region bounded by the
line y = x − 1 and the parabola y2 = 2x + 6. Answer: 36.
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Example. Evaluate the iterated integral I =
∫ 1

0

∫ 1

x
sin(y2) dydx by

interchanging the order of integration.

Solution. Let D be the region The region of integration, then it follows
from the upper and lower limits of the iterated integral, we have
D = { (x, y) | 0 ≤ x ≤ 1, x ≤ y ≤ 1 }, which is given by vertical
cross-section. Hence D is the triangular region bounded by the lines
y = x, x = 0 and y = 1. Rewrite D by means of horizontal
cross-section, then 0 ≤ y ≤ 1, and the bounding curve will be x = 0
on the left, and x = y on the right of the region D. Hence, we have
another description of D = { (x, y) | 0 ≤ y ≤ 1, 0 ≤ x ≤ y }. By

Fubini’s theorem we have I =
∫ 1

0

∫ 1

x
sin(y2) dydx =∫ 1

0

∫ y

0
sin(y2) dxdy =

∫ 1

0
y sin(y2)dy =

[
−1

2
cos(y2)

]1

0
=

1 − cos 1
2
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Example. Find the volume of the solid S above the xy-plane and is
bounded by the cylinder x2 + y2 = 1 and the plane z = 0 and z = y.

Solution. Since the plane z = 0 is the bot-
tom of the solid, and the plane z = y is the
top face of the solid, we may use the function
defining this plane z = y as the height func-
tion of this solid. In other words, f (x, y) = y
is function appeared as integrand. Therefore,
the volume of the solid can be computed by
integrating this function f over the bottom face
of the solid which is the semi-circular disk

D = { (x, y) | x2 + y2 ≤ 1, y ≥ 0 }
= { (x, y) | 0 ≤ y ≤ 1, −

√
1 − y2 ≤ x ≤

√
1 − y2 }. The volume of

the solid S is
∫∫

D
y dA =

∫ 1

0

∫ √
1−y2

−
√

1−y2
y dx dy

=
∫ 1

0
2y
√

1 − y2 dy =

[
−2

3
(1 − y2)3/2

]1

0
=

2
3

.
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Example. The region common to the interiors of the cylinders
x2 + y2 = 1 and x2 + z2 = 1, one-eighth of which is shown in the
accompanying figure.

Solution. We just calculate the volume of portion D of the region in
1st octant. One immediately recognizes the solid D has a top given
by x2 + z2 = 1, i.e. zmax(x) =

√
1 − x2, and xy-plane as the bottom.

Moreover, the shadow R of the solid D is a circle disk in the 1st
quadrant, so R = { (x, y) | 0 ≤ x ≤ 1, 0 ≤ y ≤

√
1 − x2 }. The volume

of D is given by
∫∫∫

D
1 dV =

∫∫
R

∫ √
1−x2

0
dzdA

=
∫ 1

0

∫ √
1−x2

0

√
1 − x2 dy dx =

∫ 1

0
(1 − x2)dx =

[
x − x3

3

]1

0
=

2
3

.
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