Exercise 3 - Riemann integral in \mathbb{R}^{2} and \mathbb{R}^{3}

Find the area of the region $\Omega \subset \mathbb{R}^{2}$ given by the inequalities

$$
y-2 x^{2}-4 x \geq 0, \quad 5 x-y+1 \geq 0
$$

Find the area of the region $\Omega \subset \mathbb{R}^{2}$ given by the inequalities

$$
8 y^{2} \leq x+y+2, \quad x-3 y \leq 10
$$

Find the area of the region $\Omega \subset \mathbb{R}^{2}$ given by the inequalities

$$
x+y^{2}-2 y+2 \leq 0, \quad y^{2}+2 \leq x+4 y .
$$

Determine the integral $\iint_{\Omega} x \mathrm{~d} x \mathrm{~d} y$, where the region $\Omega \subset \mathbb{R}^{2}$ is given by the inequalities

$$
x^{2}+y^{2} \leq 9, \quad x^{2}-y^{2} \geq 1, \quad x \geq 0 .
$$

Find the area of the region $\Omega \subset \mathbb{R}^{2}$ given by the inequality

$$
2 x^{2}+3 y^{2} \leq 4 x
$$

Find the area of the region $\Omega \subset \mathbb{R}^{2}$ given by the inequalities

$$
\left(x^{2}+y^{2}\right)^{3} \leq 8 x y\left(x^{2}-y^{2}\right), \quad x, y \geq 0
$$

Use polar coordinates.
Find the area of the region $\Omega \subset \mathbb{R}^{2}$ given by the inequalities

$$
(x+y)^{4} \leq 4 x y, \quad x, y \geq 0
$$

Use the substitution $x=r \cos ^{2} \varphi, y=r \sin ^{2} \varphi$, where $r>0$ and $0<\varphi<\frac{1}{2} \pi$.
Determine the integral $\iint_{\Omega} \frac{x}{y} \mathrm{~d} x \mathrm{~d} y$, where the region $\Omega \subset \mathbb{R}^{2}$ is given by the inequalities

$$
1 \leq x y \leq 3, \quad x \leq 2 y \leq 8 x .
$$

Use the substitution $u=x y$ and $v=\frac{y}{x}$.
Determine the coordinate $x_{c g}$ of a centre of gravity of a homogenous area $\Omega \subset \mathbb{R}^{2}$ given by the inequalities

$$
x^{2}-8 x-2 y+12 \leq 0, \quad x+y \leq 2,
$$

provided you now that its area is equal to $\frac{2}{3}$. $\quad\left[x_{c}=3\right]$
Determine the coordinate $y_{c g}$ of a centre of gravity of a homogenous area $\Omega \subset \mathbb{R}^{2}$ given by the inequalities

$$
4 y^{2}-y-2+2 x \leq 0, \quad 2 x+3 y+6 \geq 0
$$

provided you now that its area is equal to 9 .

$$
\left[y_{c g}=\frac{1}{2}\right]
$$

Determine the coordinate $y_{c g}$ of a centre of gravity of a homogenous area $\Omega \subset \mathbb{R}^{2}$ given by the inequalities

$$
y^{2}+2 x+4 \leq y, \quad y^{2}+2 y \leq x+5
$$

provided you now that its area is equal to $\frac{27}{4}$.

$$
\left[y_{c g}=-\frac{1}{2}\right]
$$

Determine the coordinate $y_{c g}$ of a centre of gravity of a homogenous area $\Omega \subset \mathbb{R}^{2}$ given by the inequalities

$$
4 x^{2}+9 y^{2} \leq 8 x, \quad y \geq 0
$$

provided you now that its area is equal to $\frac{1}{3} \pi$.

$$
\left[y_{c g}=\frac{8}{9 \pi}\right]
$$

Determine the coordinate $x_{c g}$ of a centre of gravity of a homogenous area $\Omega \subset \mathbb{R}^{2}$ given by the inequalities

$$
1 \leq x y \leq 4, \quad x \leq y \leq 9 x
$$

provided you now that its area is equal to $3 \ln 3$. Use the substitution $u=x y$ and $v=\frac{y}{x}$. $\left[x_{c g}=\frac{28}{27 \ln 3}\right]$
Determine the coordinate $y_{c g}$ of a centre of gravity of a homogenous area $\Omega \subset \mathbb{R}^{2}$ given by the inequalities

$$
1 \leq x y \leq 4, \quad x \leq y \leq 9 x
$$

provided you now that its area is equal to $3 \ln 3$. Use the substitution $u=x y$ and $v=\frac{y}{x}$ $\left[y_{c g}=\frac{28}{9 \ln 3}\right]$
Determine the coordinate $x_{c g}$ of a centre of gravity of a homogenous area $\Omega \subset \mathbb{R}^{2}$ given by the inequalities

$$
1 \leq x y^{2} \leq 8, \quad x \leq 27 y \leq 27 x
$$

provided you now that its area is equal to 9 . Use the substitution $u=x y^{2}$ and $v=\frac{y}{x}$. $\left[x_{c g}=\frac{182}{27}\right]$

Determine the coordinate $y_{c g}$ of a centre of gravity of a homogenous area $\Omega \subset \mathbb{R}^{2}$ given by the inequalities

$$
1 \leq x y^{2} \leq 8, \quad x \leq 27 y \leq 27 x,
$$

provided you now that its area is equal to 9 . Use the substitution $u=x y^{2}$ and $v=\frac{y}{x}$. $\left[y_{c g}=\frac{7}{9} \ln 3\right]$

Determine the coordinate $y_{c g}$ of a centre of gravity of a homogenous area $\Omega \subset \mathbb{R}^{2}$ given by the inequalities

$$
1 \leq x y \leq 4, \quad x \leq y^{2} \leq 2 x
$$

provided you now that its area is equal to $\ln 2$. Use a substitution $u=x y$ and $v=\frac{y^{2}}{x}$. $\left[y_{c g}=\frac{3}{4 \ln 2}(4 \sqrt[3]{4}-1)(\sqrt[3]{2}-1)\right]$

A force F spread over an area $\mathcal{S} \subset \mathbb{R}^{2}$ given by the inequalities

$$
x^{2}+y^{2} \leq 5, \quad y \geq x^{2}+1,
$$

causes a pressure $p(x, y)=y$. Find the total force F, i.e., the integral

$$
F=\iint_{\mathcal{S}} p(x, y) \mathrm{d} x \mathrm{~d} y .
$$

$$
\left[F=\frac{14}{5}\right]
$$

A force F spread over an area $\mathcal{S} \subset \mathbb{R}^{2}$ given by the inequalities

$$
3 x^{2}+2 y^{2} \leq 6, \quad x^{2}+2 \leq 2 y^{2}, \quad x, y>0
$$

causes a pressure $p(x, y)=2 y$. Find the total force F, i.e., the integral

$$
F=\iint_{\mathcal{S}} p(x, y) \mathrm{d} x \mathrm{~d} y .
$$

$$
\left[F=\frac{4}{3}\right]
$$

A force F spread over an area $\mathcal{S} \subset \mathbb{R}^{2}$ given by the inequalities

$$
9 x^{2}+4 y^{2} \leq 36, \quad y>0
$$

causes a pressure $p(x, y)=y$. Find the total force F, i.e., the integral

$$
F=\iint_{\mathcal{S}} p(x, y) \mathrm{d} x \mathrm{~d} y .
$$

$$
[F=12]
$$

Let $I=\int_{0}^{\infty} \mathrm{e}^{-x^{2}} \mathrm{~d} x$. Then the following equality holds:

$$
I^{2}=\int_{0}^{\infty} \mathrm{e}^{-x^{2}} \mathrm{~d} x \int_{0}^{\infty} \mathrm{e}^{-y^{2}} \mathrm{~d} y=\iint_{\Omega} \mathrm{e}^{-x^{2}-y^{2}} \mathrm{~d} x \mathrm{~d} y
$$

where $\Omega \subset \mathbb{R}^{2}$ is given by the inequalities $x, y>0$.
Using polar coordinates, find the integral I.

$$
\left[I=\frac{1}{2} \sqrt{\pi}\right]
$$

Find the volume of a solid $\mathcal{T} \subset \mathbb{R}^{3}$ given by the inequalities

$$
x^{2}+4 y^{2} \leq z \leq 3
$$

Find the volume of a solid $\mathcal{T} \subset \mathbb{R}^{3}$ given by the inequalities

$$
0 \leq z \leq x y, \quad x^{2}+y^{2} \leq 4, \quad x, y>0
$$

Find the volume of a solid $\mathcal{T} \subset \mathbb{R}^{3}$ given by the inequalities

$$
x^{2}+y^{2}+z^{2} \leq 4, \quad x^{2}+y^{2}-2 z^{2} \geq 1 .
$$

Find the volume of a solid $\mathcal{T} \subset \mathbb{R}^{3}$ given by the inequalities

$$
x^{2}+y^{2} \leq z, \quad 2 x^{2}+2 y^{2}+z^{2} \leq 8
$$

$$
\left[\frac{2}{3} \pi(8 \sqrt{2}-7)\right]
$$

Find the volume of a solid $\mathcal{T} \subset \mathbb{R}^{3}$ given by the inequalities

$$
x^{2}+y^{2} \leq 4, \quad x+z \geq 0, \quad x-z \geq 0
$$

Find the volume of a solid $\mathcal{T} \subset \mathbb{R}^{3}$ given by the inequalities

$$
x^{2}+y^{2}+z^{2} \leq 9, \quad-1 \leq z \leq 2, \quad x, y \geq 0
$$

Find the volume of a solid $\mathcal{T} \subset \mathbb{R}^{3}$ given by the inequalities

$$
x^{2}+y^{2}+z^{2} \leq 5, \quad x^{2}+y^{2} \geq 1
$$

Find the volume of a solid $\mathcal{T} \subset \mathbb{R}^{3}$ given by the inequalities

$$
x^{2}+y^{2} \geq 1, \quad x^{2}+y^{2}+2 \leq 2 z, \quad x^{2}+y^{2}+z \leq 4 .
$$

Find the volume of a solid $\mathcal{T} \subset \mathbb{R}^{3}$ given by the inequalities

$$
x^{2}+y^{2}+z^{2} \leq 1, \quad x^{2}+y^{2} \leq x .
$$

$$
\left[\frac{2}{9}(3 \pi-4)\right]
$$

Find the volume of a solid $\mathcal{T} \subset \mathbb{R}^{3}$ given by the inequalities

$$
x^{2}+y^{2} \geq z^{2}, \quad x^{2}+y^{2} \leq 2 y \quad z \geq 0
$$

Find the volume of a solid $\mathcal{T} \subset \mathbb{R}^{3}$ given by the inequalities

$$
9 x^{2}+4 y^{2} \leq z^{2}, \quad 0 \leq z \leq 12 \quad x \geq 0
$$

Find the volume of a solid $\mathcal{T} \subset \mathbb{R}^{3}$ given by the inequalities

$$
x^{2}+y^{2} \leq 2 x, \quad y-z \geq 0, \quad z \geq 0 .
$$

Find the volume of a solid $\mathcal{T} \subset \mathbb{R}^{3}$ given by the inequalities

$$
4 z^{2} \leq x^{2}+y^{2} \leq 2 x
$$

Find the volume of a solid $\mathcal{T} \subset \mathbb{R}^{3}$ given by the inequalities

$$
4 z+x^{2}+y^{2} \leq 24, \quad x^{2}+y^{2} \leq 4 z^{2}, \quad x, z \geq 0
$$

Find the volume of a solid $\mathcal{T} \subset \mathbb{R}^{3}$ given by the inequalities

$$
x^{2}+y^{2} \leq 2 z, \quad z-4 \leq \sqrt{x^{2}+y^{2}} .
$$

Find the volume of a solid $\mathcal{T} \subset \mathbb{R}^{3}$ given by the inequalities

$$
\left(x^{2}+y^{2}+z^{2}\right)^{3} \leq 12 x y z, \quad x, y, z>0
$$

Use spherical coordinates.
Find the coordinate $z_{c g}$ of the centre of gravity of a solid $\mathcal{T} \subset \mathbb{R}^{3}$ given by the inequalities

$$
x^{2}+z^{2} \leq 1, \quad y^{2}+z^{2} \leq 1, \quad z \geq 0
$$

provided you know that its volume is $V=\frac{8}{3}$.

$$
\left[z_{c g}=\frac{3}{8}\right]
$$

Find the coordinate $z_{c g}$ of the centre of gravity of a solid $\mathcal{T} \subset \mathbb{R}^{3}$ given by the inequalities

$$
0 \leq z \leq x y, \quad x+y \leq 1, \quad x, y \geq 0
$$

provided you know that its volume is $V=\frac{1}{24}$.

$$
\left[z_{c g}=\frac{1}{15}\right]
$$

Find the coordinate $z_{c g}$ of the centre of gravity of a solid $\mathcal{T} \subset \mathbb{R}^{3}$ given by the inequalities

$$
x^{2}+y^{2}+z^{2} \leq 9, \quad-1 \leq z \leq 2
$$

provided you know that its volume is $V=24 \pi$.

$$
\left[z_{c g}=\frac{13}{32}\right]
$$

Find the coordinate $x_{c g}$ of the centre of gravity of a solid $\mathcal{T} \subset \mathbb{R}^{3}$ given by the inequalities

$$
x^{2}+y^{2} \leq 4, \quad x^{2}+z^{2} \leq 4, \quad 0 \leq x \leq 1
$$

provided you know that its volume is $V=\frac{44}{3}$.

$$
\left[x_{c g}=\frac{21}{44}\right]
$$

Find the coordinate $x_{c g}$ of the centre of gravity of a solid $\mathcal{T} \subset \mathbb{R}^{3}$ given by the inequalities

$$
x^{2}+y^{2} \leq 2 x, \quad y-z \geq 0, \quad z \geq 0
$$

provided you know that its volume is $V=\frac{2}{3}$.

$$
\left[x_{c g}=1\right]
$$

Find the coordinate $z_{c g}$ of the centre of gravity of a solid $\mathcal{T} \subset \mathbb{R}^{3}$ given by the inequalities

$$
x^{2}+4 y^{2} \leq z \leq 3,
$$

provided you know that its volume is $V=\frac{9}{4} \pi$.

$$
\left[z_{c g}=2\right]
$$

Find the coordinate $x_{c g}$ of the centre of gravity of a solid $\mathcal{T} \subset \mathbb{R}^{3}$ given by the inequalities

$$
9 x^{2}+4 y^{2} \leq z^{2}, \quad 0 \leq z \leq 3, \quad x \geq 0
$$

provided you know that its volume is $V=\frac{3}{4} \pi$.
$\left[x_{T}=\frac{3}{\pi}\right]$
The charge density in a solid \mathcal{T} given by the inequalities

$$
x^{2}+y^{2}+z^{2} \leq 2, \quad x^{2}+y^{2} \leq 1, \quad z \geq 0,
$$

is $\rho(x, y, z)=z$. Find the total charge Q contained in \mathcal{T}, i.e., the integral

$$
M=\iiint_{\mathcal{T}} \rho(x, y, z) \mathrm{d} x \mathrm{~d} y \mathrm{~d} z .
$$

$$
\left[M=\frac{3}{4} \pi\right]
$$

The charge density in a solid \mathcal{T} given by the inequalities

$$
x^{2}+y^{2}+4 \leq 2 z, \quad x^{2}+y^{2}+z \leq 8, \quad x^{2}+y^{2} \geq 1,
$$

is $\rho(x, y, z)=\frac{1}{x^{2}+y^{2}}$. Find the total charge Q contained in \mathcal{T}, i.e., the integral

$$
\begin{array}{ll}
Q=\iiint_{\mathcal{T}} \rho(x, y, z) \mathrm{d} x \mathrm{~d} y \mathrm{~d} z . & \\
& {\left[Q=\frac{3}{2} \pi(8 \ln 2-3)\right]}
\end{array}
$$

The charge density in a solid \mathcal{T} given by the inequalities

$$
x^{2}+y^{2} \leq z^{2}, \quad 0 \leq z \leq 1, \quad x, y \geq 0
$$

is $\rho(x, y, z)=x y$. Find the total charge Q contained in \mathcal{T}, i.e., the integral

$$
Q=\iiint_{\mathcal{T}} \rho(x, y, z) \mathrm{d} x \mathrm{~d} y \mathrm{~d} z
$$

$$
\left[Q=\frac{1}{40}\right]
$$

The charge density in a solid \mathcal{T} given by the inequalities

$$
x^{2}+y^{2}+z^{2} \leq 5, \quad-1 \leq z \leq 2, \quad x^{2}+y^{2} \geq 1
$$

is $\rho(x, y, z)=z$. Find the total charge Q contained in \mathcal{T}, i.e., the integral

$$
Q=\iiint_{\mathcal{T}} \rho(x, y, z) \mathrm{d} x \mathrm{~d} y \mathrm{~d} z
$$

$$
\left[Q=\frac{9}{4} \pi\right]
$$

Find the total electric charge Q of a ball $x^{2}+y^{2}+z^{2} \leq 1$ with the charge density

$$
\rho(x, y, z)=\mathrm{e}^{-\sqrt{x^{2}+y^{2}+z^{2}}}
$$

$$
\left[Q=4 \pi\left(2-5 \mathrm{e}^{-1}\right)\right]
$$

A solid \mathcal{T} given by the inequalities

$$
x^{2}+y^{2}+z^{2} \leq 2 z, \quad x \geq 0
$$

has a density $\rho(x, y, z)=\sqrt{x^{2}+y^{2}+z^{2}}$. Find the total weight M of the solid \mathcal{T}, i.e., the integral

$$
\begin{array}{r}
M=\iiint_{\mathcal{T}} \rho(x, y, z) \mathrm{d} x \mathrm{~d} y \mathrm{~d} z \\
\\
{\left[M=\frac{4}{5} \pi\right]}
\end{array}
$$

A solid $\mathcal{T} \subset \mathbb{R}^{3}$, is given by the inequalities

$$
x^{2}+y^{2} \leq 3 z+1, \quad x^{2}+y^{2}+z \leq 5
$$

and its density is $\rho(x, y, z)=1$. Find its moment of inertia with respect to the axis z, i.e., the integral

$$
J_{z}=\iiint_{\mathcal{T}} \rho(x, y, z)\left(x^{2}+y^{2}\right) \mathrm{d} x \mathrm{~d} y \mathrm{~d} z
$$

$$
\left[J_{z}=\frac{128}{9} \pi\right]
$$

A solid $\mathcal{T} \subset \mathbb{R}^{3}$, is given by the inequalities

$$
x^{2}+y^{2}+z^{2} \leq 4, \quad x^{2}+y^{2}-2 z^{2} \geq 1, \quad z \geq 0
$$

and its density is $\rho(x, y, z)=1$. Find its moment of inertia with respect to the axis z, i.e., the integral

$$
J_{z}=\iiint_{\mathcal{T}} \rho(x, y, z)\left(x^{2}+y^{2}\right) \mathrm{d} x \mathrm{~d} y \mathrm{~d} z
$$

$$
\left[J_{z}=2 \pi\right]
$$

A solid $\mathcal{T} \subset \mathbb{R}^{3}$, is given by the inequalities

$$
x^{2}+y^{2}+z^{2} \leq 2, \quad x^{2}+y^{2} \geq 1
$$

and its density is $\rho(x, y, z)=1$. Find its moment of inertia with respect to the axis z, i.e., the integral

$$
J_{z}=\iiint_{\mathcal{T}} \rho(x, y, z)\left(x^{2}+y^{2}\right) \mathrm{d} x \mathrm{~d} y \mathrm{~d} z
$$

$$
\left[J_{z}=\frac{28}{15} \pi\right]
$$

A solid $\mathcal{T} \subset \mathbb{R}^{3}$, is given by the inequalities

$$
x^{2}+y^{2} \leq 4, \quad y+z \leq 2, \quad y-z \leq 2
$$

and its density is $\rho(x, y, z)=1$. Find its moment of inertia with respect to the axis z, i.e., the integral

$$
J_{z}=\iiint_{\mathcal{T}} \rho(x, y, z)\left(x^{2}+y^{2}\right) \mathrm{d} x \mathrm{~d} y \mathrm{~d} z
$$

$$
\left[J_{z}=32 \pi\right]
$$

