Exercise 3 – Riemann integral in \mathbb{R}^2 and \mathbb{R}^3

Find the area of the region $\Omega \subset \mathbb{R}^2$ given by the inequalities

$$y - 2x^2 - 4x \ge 0$$
, $5x - y + 1 \ge 0$.

Find the area of the region $\Omega \subset \mathbb{R}^2$ given by the inequalities

$$8y^2 \le x + y + 2$$
, $x - 3y \le 10$.

Find the area of the region $\Omega \subset \mathbb{R}^2$ given by the inequalities

$$x + y^2 - 2y + 2 \le 0$$
, $y^2 + 2 \le x + 4y$.

Determine the integral $\iint_{\Omega} x \, dx \, dy$, where the region $\Omega \subset \mathbb{R}^2$ is given by the inequalities $x^2 + y^2 \leq 9$, $x^2 - y^2 \geq 1$, $x \geq 0$.

Find the area of the region $\Omega \subset \mathbb{R}^2$ given by the inequality

 $2x^2 + 3y^2 \le 4x \,.$

 $\left[\sqrt{\frac{2}{3}}\pi\right]$

 $\left[\frac{9}{8}\right]$

 $\left\lceil \frac{125}{6} \right\rceil$

 $\left\lceil \frac{1}{3} \right\rceil$

 $\left[\frac{32}{3}\right]$

Find the area of the region $\Omega \subset \mathbb{R}^2$ given by the inequalities

$$(x^{2} + y^{2})^{3} \le 8xy(x^{2} - y^{2}), \qquad x, y \ge 0$$

Use polar coordinates.

Find the area of the region $\Omega \subset \mathbb{R}^2$ given by the inequalities

$$(x+y)^4 \le 4xy, \qquad x, y \ge 0.$$

Use the substitution $x = r \cos^2 \varphi$, $y = r \sin^2 \varphi$, where r > 0 and $0 < \varphi < \frac{1}{2}\pi$. $\left[\frac{1}{3}\right]$

Determine the integral $\iint_{\Omega} \frac{x}{y} dx dy$, where the region $\Omega \subset \mathbb{R}^2$ is given by the inequalities $1 \le xy \le 3$, $x \le 2y \le 8x$.

 $\left[\frac{1}{2}\right]$

Use the substitution u = xy and $v = \frac{y}{x}$. $\frac{7}{4}$

Determine the coordinate x_{cg} of a centre of gravity of a homogenous area $\Omega \subset \mathbb{R}^2$ given by the inequalities

 $x^2 - 8x - 2y + 12 \le 0$, $x + y \le 2$,

provided you now that its area is equal to $\frac{2}{3}$.

Determine the coordinate y_{cg} of a centre of gravity of a homogenous area $\Omega \subset \mathbb{R}^2$ given by the inequalities

$$4y^2 - y - 2 + 2x \le 0, \qquad 2x + 3y + 6 \ge 0,$$

provided you now that its area is equal to 9.

Determine the coordinate y_{cg} of a centre of gravity of a homogenous area $\Omega \subset \mathbb{R}^2$ given by the inequalities

$$y^2 + 2x + 4 \le y$$
, $y^2 + 2y \le x + 5$,

provided you now that its area is equal to $\frac{27}{4}$.

Determine the coordinate y_{cg} of a centre of gravity of a homogenous area $\Omega \subset \Omega$ en by the inequalities

$$4x^2 + 9y^2 \le 8x \,, \qquad y \ge 0 \,,$$

provided you now that its area is equal to $\frac{1}{3}\pi$.

Determine the coordinate x_{cg} of a centre of gravity of a homogenous area $\Omega \subset \mathbb{R}^2$ given by the inequalities

$$1 \le xy \le 4, \qquad x \le y \le 9x,$$

provided you now that its area is equal to $3 \ln 3$. Use the substitution u = xy and $v = \frac{y}{x}$. $x_{cg} = \frac{28}{27\ln 3}$

Determine the coordinate
$$y_{cg}$$
 of a centre of gravity of a homogenous area $\Omega \subset \mathbb{R}^2$ given
by the inequalities

 $1 < xy < 4, \qquad x < y < 9x,$

provided you now that its area is equal to $3\ln 3$. Use the substitution u = xy and $v = \frac{y}{x}$

$$\left\lfloor y_{cg} = \frac{28}{9\ln 3} \right\rfloor$$

Determine the coordinate x_{cg} of a centre of gravity of a homogenous area $\Omega \subset \mathbb{R}^2$ given by the inequalities

 $1 < xy^2 < 8$, x < 27y < 27x,

provided you now that its area is equal to 9. Use the substitution $u = xy^2$ and $v = \frac{y}{r}$. $\left[x_{cg} = \frac{182}{27}\right]$

 $\left[y_{cg} = \frac{1}{2}\right]$

 $x_c = 3$

$$\left[y_{cg} = -\frac{1}{2}\right]$$

$$u_{...} = -\frac{1}{2}$$

$$I_{cg} = -\frac{1}{2}$$

$$\mathbb{R}^2$$
 giv

$$\begin{bmatrix} y_{cg} \\ 0 \in \mathbb{P} \end{bmatrix}$$

Determine the coordinate y_{cg} of a centre of gravity of a homogenous area $\Omega \subset \mathbb{R}^2$ given by the inequalities

 $1 \le xy^2 \le 8, \qquad x \le 27y \le 27x,$

provided you now that its area is equal to 9. Use the substitution $u = xy^2$ and $v = \frac{y}{x}$. $\left[y_{cg} = \frac{7}{9} \ln 3\right]$

Determine the coordinate y_{cg} of a centre of gravity of a homogenous area $\Omega \subset \mathbb{R}^2$ given by the inequalities

$$1 \le xy \le 4, \qquad x \le y^2 \le 2x,$$

provided you now that its area is equal to $\ln 2$. Use a substitution u = xy and $v = \frac{y^2}{x}$. $\left[y_{cg} = \frac{3}{4\ln 2} \left(4\sqrt[3]{4} - 1\right) \left(\sqrt[3]{2} - 1\right)\right]$

A force F spread over an area $\mathcal{S} \subset \mathbb{R}^2$ given by the inequalities

$$x^2 + y^2 \le 5$$
, $y \ge x^2 + 1$,

causes a pressure p(x, y) = y. Find the total force F, i.e., the integral

$$F = \iint_{\mathcal{S}} p(x, y) \, \mathrm{d}x \, \mathrm{d}y$$

 $\left[F = \frac{14}{5}\right]$

A force F spread over an area $\mathcal{S} \subset \mathbb{R}^2$ given by the inequalities

$$3x^2 + 2y^2 \le 6$$
, $x^2 + 2 \le 2y^2$, $x, y > 0$,

causes a pressure p(x, y) = 2y. Find the total force F, i.e., the integral

$$F = \iint_{\mathcal{S}} p(x, y) \, \mathrm{d}x \, \mathrm{d}y \, .$$

 $\left[F = \frac{4}{3}\right]$

A force F spread over an area $\mathcal{S} \subset \mathbb{R}^2$ given by the inequalities

$$9x^2 + 4y^2 \le 36\,, \qquad y > 0\,,$$

causes a pressure p(x, y) = y. Find the total force F, i.e., the integral

$$F = \iint_{\mathcal{S}} p(x, y) \, \mathrm{d}x \, \mathrm{d}y \, .$$

F = 12

Let $I = \int_0^\infty e^{-x^2} dx$. Then the following equality holds:

$$I^{2} = \int_{0}^{\infty} e^{-x^{2}} dx \int_{0}^{\infty} e^{-y^{2}} dy = \iint_{\Omega} e^{-x^{2}-y^{2}} dx dy,$$

where $\Omega \subset \mathbb{R}^2$ is given by the inequalities x, y > 0. Using polar coordinates, find the integral I.

 $\left[I = \frac{1}{2}\sqrt{\pi}\right]$

Find the volume of a solid $\mathcal{T} \subset \mathbb{R}^3$ given by the inequalities

$$x^2 + 4y^2 \le z \le 3.$$

 $\left|\frac{9}{4}\pi\right|$

 $\begin{bmatrix} 2 \end{bmatrix}$

 4π

Find the volume of a solid $\mathcal{T} \subset \mathbb{R}^3$ given by the inequalities

$$0 \le z \le xy$$
, $x^2 + y^2 \le 4$, $x, y > 0$.

Find the volume of a solid $\mathcal{T} \subset \mathbb{R}^3$ given by the inequalities

$$x^{2} + y^{2} + z^{2} \le 4$$
, $x^{2} + y^{2} - 2z^{2} \ge 1$.

Find the volume of a solid $\mathcal{T} \subset \mathbb{R}^3$ given by the inequalities

$$x^2 + y^2 \le z$$
, $2x^2 + 2y^2 + z^2 \le 8$.

 $\left[\frac{2}{3}\pi\left(8\sqrt{2}-7\right)\right]$

Find the volume of a solid $\mathcal{T} \subset \mathbb{R}^3$ given by the inequalities

$$x^{2} + y^{2} \le 4$$
, $x + z \ge 0$, $x - z \ge 0$.

 $\left[\frac{32}{3}\right]$

 $|6\pi|$

Find the volume of a solid $\mathcal{T} \subset \mathbb{R}^3$ given by the inequalities

$$x^2 + y^2 + z^2 \le 9$$
, $-1 \le z \le 2$, $x, y \ge 0$.

Find the volume of a solid $\mathcal{T} \subset \mathbb{R}^3$ given by the inequalities

$$x^2 + y^2 + z^2 \le 5$$
, $x^2 + y^2 \ge 1$.

 $\left[\frac{2}{9}\left(3\pi-4\right)\right]$

Find the volume of a solid $\mathcal{T} \subset \mathbb{R}^3$ given by the inequalities

$$x^2 + y^2 \ge 1$$
, $x^2 + y^2 + 2 \le 2z$, $x^2 + y^2 + z \le 4$.
 $\left[\frac{3}{4}\pi\right]$

Find the volume of a solid $\mathcal{T} \subset \mathbb{R}^3$ given by the inequalities

$$x^{2} + y^{2} + z^{2} \le 1$$
, $x^{2} + y^{2} \le x$.

Find the volume of a solid $\mathcal{T} \subset \mathbb{R}^3$ given by the inequalities

$$x^2 + y^2 \ge z^2$$
, $x^2 + y^2 \le 2y$ $z \ge 0$.

Find the volume of a solid $\mathcal{T} \subset \mathbb{R}^3$ given by the inequalities

$$9x^2 + 4y^2 \le z^2$$
, $0 \le z \le 12$ $x \ge 0$.

Find the volume of a solid $\mathcal{T} \subset \mathbb{R}^3$ given by the inequalities

$$x^2 + y^2 \le 2x$$
, $y - z \ge 0$, $z \ge 0$.

 $\left[\frac{2}{3}\right]$

 $\left[\frac{32}{9}\right]$

 $\left[\frac{32}{3}\pi\right]$

 $\left[\frac{32}{9}\right]$

 4π

Find the volume of a solid $\mathcal{T} \subset \mathbb{R}^3$ given by the inequalities

$$4z^2 \le x^2 + y^2 \le 2x.$$

Find the volume of a solid $\mathcal{T} \subset \mathbb{R}^3$ given by the inequalities

$$4z + x^2 + y^2 \le 24$$
, $x^2 + y^2 \le 4z^2$, $x, z \ge 0$.

Find the volume of a solid $\mathcal{T} \subset \mathbb{R}^3$ given by the inequalities

$$x^2 + y^2 \le 2z$$
, $z - 4 \le \sqrt{x^2 + y^2}$.

 $\left[\frac{1}{2}\right]$

 $\left[z_{cg} = \frac{3}{8}\right]$

 $z_{cg} = \frac{13}{32}$

Find the volume of a solid $\mathcal{T} \subset \mathbb{R}^3$ given by the inequalities

$$(x^2 + y^2 + z^2)^3 \le 12xyz$$
, $x, y, z > 0$.

Use spherical coordinates.

Find the coordinate z_{cq} of the centre of gravity of a solid $\mathcal{T} \subset \mathbb{R}^3$ given by the inequalities

$$x^2 + z^2 \le 1$$
, $y^2 + z^2 \le 1$, $z \ge 0$,

provided you know that its volume is $V = \frac{8}{3}$.

Find the coordinate z_{cg} of the centre of gravity of a solid $\mathcal{T} \subset \mathbb{R}^3$ given by the inequalities

$$0 \le z \le xy, \qquad x+y \le 1, \qquad x, y \ge 0,$$

provided you know that its volume is $V = \frac{1}{24}$. $\left[z_{cg} = \frac{1}{15} \right]$

Find the coordinate z_{cg} of the centre of gravity of a solid $\mathcal{T} \subset \mathbb{R}^3$ given by the inequalities

$$x^2 + y^2 + z^2 \le 9$$
, $-1 \le z \le 2$,

provided you know that its volume is $V = 24\pi$.

Find the coordinate x_{cq} of the centre of gravity of a solid $\mathcal{T} \subset \mathbb{R}^3$ given by the inequalities

 $x^2 + y^2 \le 4$, $x^2 + z^2 \le 4$, $0 \le x \le 1$,

provided you know that its volume is $V = \frac{44}{3}$.	$c_{cg} = \frac{21}{44}$	
---	--------------------------	--

Find the coordinate x_{cg} of the centre of gravity of a solid $\mathcal{T} \subset \mathbb{R}^3$ given by the inequalities

$$x^2 + y^2 \le 2x$$
, $y - z \ge 0$, $z \ge 0$,

provided you know that its volume is $V = \frac{2}{3}$. $\left[x_{cg} = 1\right]$

Find the coordinate z_{cg} of the centre of gravity of a solid $\mathcal{T} \subset \mathbb{R}^3$ given by the inequalities

$$x^2 + 4y^2 \le z \le 3\,,$$

provided you know that its volume is $V = \frac{9}{4}\pi$. $\left[z_{cg} = 2\right]$

Find the coordinate x_{cg} of the centre of gravity of a solid $\mathcal{T} \subset \mathbb{R}^3$ given by the inequalities

$$9x^2 + 4y^2 \le z^2$$
, $0 \le z \le 3$, $x \ge 0$,

provided you know that its volume is $V = \frac{3}{4}\pi$.

The charge density in a solid \mathcal{T} given by the inequalities

$$x^2 + y^2 + z^2 \le 2$$
, $x^2 + y^2 \le 1$, $z \ge 0$,

is $\rho(x, y, z) = z$. Find the total charge Q contained in \mathcal{T} , i.e., the integral

$$M = \iiint_{\mathcal{T}} \rho(x, y, z) \, \mathrm{d}x \, \mathrm{d}y \, \mathrm{d}z \, .$$

 $\left[M=\tfrac{3}{4}\,\pi\right]$

The charge density in a solid \mathcal{T} given by the inequalities

$$x^{2} + y^{2} + 4 \le 2z$$
, $x^{2} + y^{2} + z \le 8$, $x^{2} + y^{2} \ge 1$,

is $\rho(x, y, z) = \frac{1}{x^2 + y^2}$. Find the total charge Q contained in \mathcal{T} , i.e., the integral

$$Q = \iiint_{\mathcal{T}} \rho(x, y, z) \, \mathrm{d}x \, \mathrm{d}y \, \mathrm{d}z \, .$$

$$\left[Q = \frac{3}{2}\pi \left(8\ln 2 - 3\right)\right]$$

The charge density in a solid \mathcal{T} given by the inequalities

 $x^2 + y^2 \le z^2$, $0 \le z \le 1$, $x, y \ge 0$,

is $\rho(x, y, z) = xy$. Find the total charge Q contained in \mathcal{T} , i.e., the integral

$$Q = \iiint_{\mathcal{T}} \rho(x, y, z) \, \mathrm{d}x \, \mathrm{d}y \, \mathrm{d}z \, .$$

 $\left[Q = \frac{1}{40}\right]$

The charge density in a solid \mathcal{T} given by the inequalities

$$x^2 + y^2 + z^2 \le 5 \,, \qquad -1 \le z \le 2 \,, \qquad x^2 + y^2 \ge 1 \,,$$

is $\rho(x, y, z) = z$. Find the total charge Q contained in \mathcal{T} , i.e., the integral

$$Q = \iiint_{\mathcal{T}} \rho(x, y, z) \, \mathrm{d}x \, \mathrm{d}y \, \mathrm{d}z \, .$$

 $\left[Q = \frac{9}{4}\,\pi\right]$

Find the total electric charge Q of a ball $x^2 + y^2 + z^2 \le 1$ with the charge density

$$\rho(x, y, z) = e^{-\sqrt{x^2 + y^2 + z^2}}$$

 $\left[x_T = \frac{3}{\pi}\right]$

 $\left[J_z = \frac{128}{9}\pi\right]$

A solid \mathcal{T} given by the inequalities

$$x^2 + y^2 + z^2 \le 2z$$
, $x \ge 0$,

has a density $\rho(x, y, z) = \sqrt{x^2 + y^2 + z^2}$. Find the total weight M of the solid \mathcal{T} , i.e., the integral

$$M = \iiint_{\mathcal{T}} \rho(x, y, z) \, \mathrm{d}x \, \mathrm{d}y \, \mathrm{d}z \,.$$
$$\left[M = \frac{4}{5} \, \pi \right]$$

A solid $\mathcal{T} \subset \mathbb{R}^3$, is given by the inequalities

$$x^{2} + y^{2} \le 3z + 1$$
, $x^{2} + y^{2} + z \le 5$,

and its density is $\rho(x, y, z) = 1$. Find its moment of inertia with respect to the axis z, i.e., the integral

$$J_z = \iiint_{\mathcal{T}} \rho(x, y, z) \left(x^2 + y^2 \right) dx \, dy \, dz \, .$$

A solid $\mathcal{T} \subset \mathbb{R}^3$, is given by the inequalities

$$x^{2} + y^{2} + z^{2} \le 4$$
, $x^{2} + y^{2} - 2z^{2} \ge 1$, $z \ge 0$,

and its density is $\rho(x, y, z) = 1$. Find its moment of inertia with respect to the axis z, i.e., the integral

$$J_{z} = \iiint_{\mathcal{T}} \rho(x, y, z) \left(x^{2} + y^{2}\right) dx dy dz .$$
$$\left[J_{z} = 2\pi\right]$$

A solid $\mathcal{T} \subset \mathbb{R}^3$, is given by the inequalities

$$x^2 + y^2 + z^2 \le 2$$
, $x^2 + y^2 \ge 1$,

and its density is $\rho(x, y, z) = 1$. Find its moment of inertia with respect to the axis z, i.e., the integral

$$J_z = \iiint_{\mathcal{T}} \rho(x, y, z) \left(x^2 + y^2 \right) dx \, dy \, dz \, .$$
$$\left[J_z = \frac{28}{15} \, \pi \right]$$

A solid $\mathcal{T} \subset \mathbb{R}^3$, is given by the inequalities

 $x^2 + y^2 \le 4$, $y + z \le 2$, $y - z \le 2$

and its density is $\rho(x, y, z) = 1$. Find its moment of inertia with respect to the axis z, i.e., the integral

$$J_z = \iiint_{\mathcal{T}} \rho(x, y, z) \left(x^2 + y^2 \right) dx \, dy \, dz \, .$$

 $\left[J_z = 32\pi\right]$