Exercises 3a - Multiple Integrals

Express the integral | fQ f(z,y) dz dy, where the region Q C R? is given by the inequalities
20 +y+2>0, 2 + 3y < 2, y >0,

in the terms of two simple integrals in at least one integration order.
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Express the integral [ fQ z,y) dz dy, where Q C R? is a finite region bounded by the
lines

in the terms of two simple integrals in at least one integration order.
F(4-y)
[ fep)dedy = [y [ fle.)d
)
2(2+x) 3(3—x)

:fdx f fxydy+fd90 f f(z,y)dy

Express the integral [, f(x,y) dz dy, where the region Q C R? is given by the inequalities
r+y+1<0, T <2y+2, r+1>0,

in the terms of two simple integrals in at least one integration order.
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Express the integral [ fQ z,y) dz dy, where Q C R? is a finite region bounded by the
lines

in the terms of two simple integrals in at least one integration order.
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Express the integral | fQ f(z,y) dz dy, where the region Q C R? is given by the inequalities
2u<xz+1, r<y+1, O<y<l1,

in the terms of two simple integrals in at least one integration order.
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Express the integral [[, f(x,y)dz dy, where Q C R? is a finite region bounded by the
lines

—sr+iy=1, —jr-jzy=1, =0,
in the terms of two simple integrals in at least one integration order.
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Express the integral [[,, f(z,y) dz dy, where the region Q C R? is given by the inequalities
by <z +2, T+2y <2, y >0,

in the terms of two simple integrals in at least one integration order.
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Express the integral [[, f(x,y)dz dy, where Q C R? is a finite region bounded by the
lines

%Qf—Fiy:l; %ﬁ—%yzl’ r=0,
in the terms of two simple integrals in at least one integration order.
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Express the integral [, f(x,y) dz dy, where the region Q C R? is given by the inequalities
r<2y+1, Jy<zxz+2, O<y<1,

in the terms of two simple integrals in at least one integration order.
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Express the integral [ fQ z,y) dz dy, where Q C R? is a finite region bounded by the

lines
——a:+ y—l ——x—l— y—l x =0,
in the terms of two snnple integrals in at least one integration order
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Express the integral [, f(x,y) dz dy, where the region Q C R? is given by the inequalities
T <2y+3, Jy<2zx+1, -l<y<1,
in the terms of two simple integrals in at least one integration order
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z,y)dz dy, where Q C R? is a finite region bounded by the

Express the integral [, f(
z=0,
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in the terms of two simple integrals in at least one integration order.
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Express the integral [[,, f(z,y) dz dy, where the region Q C R? is given by the inequalities
r+2y<1, O<z+y+1, O0<y<l1,
in the terms of two simple integrals in at least one integration order
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Express the integral [[, f(x,y)dz dy, where Q C R? is a finite region bounded by the
lines

sr—gy=1, jo—iy=1, x=0,
in the terms of two simple integrals in at least one integration order.
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Express the integral [, f(x,y) dz dy, where the region Q C R? is given by the inequalities
r<y+2, y<2zxr+1, -l<z<l1,

in the terms of two simple integrals in at least one integration order.
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Express the integral [[, f(x,y)dz dy, where Q@ C R? is a finite region bounded by the
lines

se—ay=1,  grogy=1, y=0,
in the terms of two simple integrals in at least one integration order.
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Express the integral [, f(x,y) dz dy, where the region Q C R? is given by the inequalities
3y < br+4, or +4y < 17, y+2>0,

in the terms of two simple integrals in at least one integration order.
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