Exercises 3a - Multiple Integrals

Express the integral $\iint_{\Omega} f(x, y) \mathrm{d} x \mathrm{~d} y$, where the region $\Omega \subset \mathbb{R}^{2}$ is given by the inequalities

$$
2 x+y+2>0, \quad 2 x+3 y<2, \quad y>0
$$

in the terms of two simple integrals in at least one integration order.

$$
\left[\begin{array}{rl}
\iint_{\Omega} f(x, y) \mathrm{d} x \mathrm{~d} y & =\int_{0}^{2} \mathrm{~d} y \int_{-\frac{1}{2}(y+2)}^{\frac{1}{2}(2-3 y)} f(x, y) \mathrm{d} x= \\
& =\int_{-2}^{-1} \mathrm{~d} x \int_{-2(x+1)}^{\frac{2}{3}(1-x)} f(x, y) \mathrm{d} y+\int_{-1}^{1} \mathrm{~d} x \int_{0}^{\frac{2}{3}(1-x)} f(x, y) \mathrm{d} y .
\end{array}\right.
$$

Express the integral $\iint_{\Omega} f(x, y) \mathrm{d} x \mathrm{~d} y$, where $\Omega \subset \mathbb{R}^{2}$ is a finite region bounded by the lines

$$
-\frac{1}{2} x+\frac{1}{4} y=1, \quad \frac{1}{3} x+\frac{1}{4} y=1, \quad y=0
$$

in the terms of two simple integrals in at least one integration order.

$$
\left[\begin{array}{rl}
\iint_{\Omega} f(x, y) \mathrm{d} x \mathrm{~d} y & =\int_{0}^{4} \mathrm{~d} y \int_{\frac{1}{2}(y-4)}^{\frac{3}{4}(4-y)} f(x, y) \mathrm{d} x= \\
& =\int_{-2}^{0} \mathrm{~d} x \int_{0}^{2(2+x)} f(x, y) \mathrm{d} y+\int_{0}^{3} \mathrm{~d} x \int_{0}^{\frac{4}{3}(3-x)} f(x, y) \mathrm{d} y
\end{array}\right]
$$

Express the integral $\iint_{\Omega} f(x, y) \mathrm{d} x \mathrm{~d} y$, where the region $\Omega \subset \mathbb{R}^{2}$ is given by the inequalities

$$
3 x+y+1<0, \quad x<2 y+2, \quad x+1>0
$$

in the terms of two simple integrals in at least one integration order.

$$
\left[\begin{array}{rl}
\iint_{\Omega} f(x, y) \mathrm{d} x \mathrm{~d} y & =\int_{-1}^{0} \mathrm{~d} x \int_{\frac{1}{2}(x-2)}^{-3 x-1} f(x, y) \mathrm{d} y= \\
& =\int_{-\frac{3}{2}}^{-1} d y \int_{-1}^{2(y+1)} f(x, y) \mathrm{d} x+\int_{-1}^{2} \mathrm{~d} y \int_{-1}^{-\frac{1}{3}(y+1)} f(x, y) \mathrm{d} x,
\end{array}\right]
$$

Express the integral $\iint_{\Omega} f(x, y) \mathrm{d} x \mathrm{~d} y$, where $\Omega \subset \mathbb{R}^{2}$ is a finite region bounded by the lines

$$
-\frac{1}{2} x-\frac{1}{5} y=1, \quad \frac{1}{4} x-\frac{1}{5} y=1, \quad y=0
$$

in the terms of two simple integrals in at least one integration order.

$$
\left[\begin{array}{rl}
\iint_{\Omega} f(x, y) \mathrm{d} x \mathrm{~d} y & =\int_{-5}^{0} \mathrm{~d} y \int_{-\frac{2}{5}(y+5)}^{\frac{4}{5}(y+5)} f(x, y) \mathrm{d} x= \\
& \left.=\int_{-2}^{0} \mathrm{~d} x \int_{-\frac{5}{2}(2+x)}^{0} f(x, y) \mathrm{d} y+\int_{0}^{4} \mathrm{~d} x \int_{\frac{5}{4}(x-4)}^{0} f(x, y) \mathrm{d} y,\right]
\end{array}\right.
$$

Express the integral $\iint_{\Omega} f(x, y) \mathrm{d} x \mathrm{~d} y$, where the region $\Omega \subset \mathbb{R}^{2}$ is given by the inequalities

$$
2 y<x+1, \quad x<y+1, \quad 0<y<1
$$

in the terms of two simple integrals in at least one integration order.

$$
\left[\begin{array}{rl}
\iint_{\Omega} f(x, y) \mathrm{d} x \mathrm{~d} y & =\int_{0}^{1} \mathrm{~d} y \int_{2 y-1}^{y+1} f(x, y) \mathrm{d} x= \\
& =\int_{-1}^{1} \mathrm{~d} x \int_{0}^{\frac{1}{2}(x+1)} f(x, y) \mathrm{d} y+\int_{1}^{2} \mathrm{~d} x \int_{x-1}^{1} f(x, y) \mathrm{d} y
\end{array}\right]
$$

Express the integral $\iint_{\Omega} f(x, y) \mathrm{d} x \mathrm{~d} y$, where $\Omega \subset \mathbb{R}^{2}$ is a finite region bounded by the lines

$$
-\frac{1}{2} x+\frac{1}{5} y=1, \quad-\frac{1}{2} x-\frac{1}{3} y=1, \quad x=0
$$

in the terms of two simple integrals in at least one integration order.

$$
\left[\begin{array}{rl}
\iint_{\Omega} f(x, y) \mathrm{d} x \mathrm{~d} y & =\int_{-2}^{0} \mathrm{~d} x \int_{-\frac{3}{2}(x+2)}^{\frac{5}{2}(x+2)} f(x, y) \mathrm{d} y= \\
& =\int_{-3}^{0} \mathrm{~d} y \int_{-\frac{2}{3}(y+3)}^{0} f(x, y) \mathrm{d} x+\int_{0}^{5} \mathrm{~d} y \int_{\frac{2}{5}(y-5)}^{0} f(x, y) \mathrm{d} x,
\end{array}\right]
$$

Express the integral $\iint_{\Omega} f(x, y) \mathrm{d} x \mathrm{~d} y$, where the region $\Omega \subset \mathbb{R}^{2}$ is given by the inequalities

$$
6 y<x+2, \quad x+2 y<2, \quad y>0,
$$

in the terms of two simple integrals in at least one integration order.

$$
\left[\begin{array}{rl}
\iint_{\Omega} f(x, y) \mathrm{d} x \mathrm{~d} y & =\int_{0}^{\frac{1}{2}} \mathrm{~d} y \int_{6 y-2}^{2-2 y} f(x, y) \mathrm{d} x= \\
& =\int_{-2}^{1} \mathrm{~d} x \int_{0}^{\frac{1}{6}(x+2)} f(x, y) \mathrm{d} y+\int_{1}^{2} \mathrm{~d} x \int_{0}^{\frac{1}{2}(2-x)} f(x, y) \mathrm{d} y
\end{array}\right]
$$

Express the integral $\iint_{\Omega} f(x, y) \mathrm{d} x \mathrm{~d} y$, where $\Omega \subset \mathbb{R}^{2}$ is a finite region bounded by the lines

$$
\frac{1}{3} x+\frac{1}{4} y=1, \quad \frac{1}{3} x-\frac{1}{2} y=1, \quad x=0
$$

in the terms of two simple integrals in at least one integration order.

$$
\left[\begin{array}{rl}
\iint_{\Omega} f(x, y) \mathrm{d} x \mathrm{~d} y & =\int_{0}^{3} \mathrm{~d} x \int_{\frac{2}{3}(x-3)}^{\frac{4}{3}(3-x)} f(x, y) \mathrm{d} y= \\
& =\int_{-2}^{0} \mathrm{~d} y \int_{0}^{\frac{3}{2}(2+y)} f(x, y) \mathrm{d} x+\int_{0}^{4} \mathrm{~d} y \int_{0}^{\frac{3}{4}(4-y)} \mathrm{d} x .
\end{array}\right]
$$

Express the integral $\iint_{\Omega} f(x, y) \mathrm{d} x \mathrm{~d} y$, where the region $\Omega \subset \mathbb{R}^{2}$ is given by the inequalities

$$
x<2 y+1, \quad 3 y<x+2, \quad 0<y<1
$$

in the terms of two simple integrals in at least one integration order.

$$
\left[\begin{array}{rl}
\iint_{\Omega} f(x, y) \mathrm{d} x \mathrm{~d} y & =\int_{0}^{1} \mathrm{~d} y \int_{3 y-2}^{2 y+1} f(x, y) \mathrm{d} x= \\
& =\int_{-2}^{1} \mathrm{~d} x \int_{0}^{\frac{1}{3}(x+2)} f(x, y) \mathrm{d} y+\int_{1}^{3} \mathrm{~d} x \int_{\frac{1}{2}(x-1)}^{1} f(x, y) \mathrm{d} y
\end{array}\right]
$$

Express the integral $\iint_{\Omega} f(x, y) \mathrm{d} x \mathrm{~d} y$, where $\Omega \subset \mathbb{R}^{2}$ is a finite region bounded by the lines

$$
-\frac{1}{7} x+\frac{1}{5} y=1, \quad-\frac{1}{7} x+\frac{1}{2} y=1, \quad x=0
$$

in the terms of two simple integrals in at least one integration order.

$$
\left[\begin{array}{rl}
\iint_{\Omega} f(x, y) \mathrm{d} x \mathrm{~d} y & =\int_{-7}^{0} \mathrm{~d} x \int_{\frac{2}{7}(x+7)}^{\frac{5}{7}(x+7)} f(x, y) \mathrm{d} y= \\
& =\int_{0}^{2} \mathrm{~d} y \int_{\frac{7}{5}(y-5)}^{\frac{7}{2}(y-2)} f(x, y) \mathrm{d} x+\int_{2}^{5} \mathrm{~d} y \int_{\frac{7}{5}(y-5)}^{0} f(x, y) \mathrm{d} x .
\end{array}\right]
$$

Express the integral $\iint_{\Omega} f(x, y) \mathrm{d} x \mathrm{~d} y$, where the region $\Omega \subset \mathbb{R}^{2}$ is given by the inequalities

$$
x<2 y+3, \quad 3 y<2 x+1, \quad-1<y<1,
$$

in the terms of two simple integrals in at least one integration order.

$$
\left[\begin{array}{rl}
\iint_{\Omega} f(x, y) \mathrm{d} x \mathrm{~d} y & =\int_{-1}^{1} \mathrm{~d} y \int_{\substack{\frac{1}{2}(3 y-1)}}^{2 y+3} f(x, y) \mathrm{d} x= \\
& =\int_{-2}^{1} \mathrm{~d} x \int_{-1}^{\frac{1}{3}(2 x+1)} f(x, y) \mathrm{d} y+\int_{1}^{5} \mathrm{~d} x \int_{\frac{1}{2}(x-3)}^{1} f(x, y) \mathrm{d} y .
\end{array}\right]
$$

Express the integral $\iint_{\Omega} f(x, y) \mathrm{d} x \mathrm{~d} y$, where $\Omega \subset \mathbb{R}^{2}$ is a finite region bounded by the lines

$$
-\frac{1}{5} x-\frac{1}{4} y=1, \quad-\frac{1}{5} x-\frac{1}{2} y=1, \quad x=0
$$

in the terms of two simple integrals in at least one integration order.

$$
\left[\begin{array}{rl}
\iint_{\Omega} f(x, y) \mathrm{d} x \mathrm{~d} y & =\int_{-5}^{0} \mathrm{~d} x \int_{-\frac{4}{5}(x+5)}^{-\frac{2}{5}(x+5)} f(x, y) \mathrm{d} y= \\
& \left.=\int_{-4}^{-2} \mathrm{~d} y \int_{-\frac{5}{4}(y+4)}^{0} f(x, y) \mathrm{d} x+\int_{-2}^{0} \mathrm{~d} y \int_{-\frac{5}{4}(y+4)}^{-\frac{5}{2}(y+2)} f(x, y) \mathrm{d} x .\right]
\end{array}\right.
$$

Express the integral $\iint_{\Omega} f(x, y) \mathrm{d} x \mathrm{~d} y$, where the region $\Omega \subset \mathbb{R}^{2}$ is given by the inequalities

$$
x+2 y<1, \quad 0<x+y+1, \quad 0<y<1
$$

in the terms of two simple integrals in at least one integration order.

$$
\left[\begin{array}{rl}
\iint_{\Omega} f(x, y) \mathrm{d} x \mathrm{~d} y & =\int_{0}^{1} \mathrm{~d} y \int_{-1-y}^{1-2 y} f(x, y) \mathrm{d} x= \\
& =\int_{-2}^{-1} \mathrm{~d} x \int_{-x-1}^{1} f(x, y) \mathrm{d} y+\int_{-1}^{1} \mathrm{~d} x \int_{0}^{\frac{1}{2}(1-x)} f(x, y) \mathrm{d} y
\end{array}\right]
$$

Express the integral $\iint_{\Omega} f(x, y) \mathrm{d} x \mathrm{~d} y$, where $\Omega \subset \mathbb{R}^{2}$ is a finite region bounded by the lines

$$
\frac{1}{2} x-\frac{1}{3} y=1, \quad \frac{1}{2} x-\frac{1}{5} y=1, \quad x=0,
$$

in the terms of two simple integrals in at least one integration order.

$$
\left[\begin{array}{rl}
\iint_{\Omega} f(x, y) \mathrm{d} x \mathrm{~d} y & =\int_{0}^{2} \mathrm{~d} x \int_{\frac{\frac{5}{2}(x-2)}{\frac{3}{2}(x-2)}} f(x, y) \mathrm{d} y= \\
& =\int_{-3}^{0} \mathrm{~d} y \int_{\frac{2}{3}(y+3)}^{\frac{2}{5}(y+5)} f(x, y) \mathrm{d} x+\int_{-5}^{-3} \mathrm{~d} y \int_{0}^{\frac{2}{5}(y+5)} f(x, y) \mathrm{d} x .
\end{array}\right.
$$

Express the integral $\iint_{\Omega} f(x, y) \mathrm{d} x \mathrm{~d} y$, where the region $\Omega \subset \mathbb{R}^{2}$ is given by the inequalities

$$
x<y+2, \quad y<2 x+1, \quad-1<x<1
$$

in the terms of two simple integrals in at least one integration order.

$$
\left[\begin{array}{rl}
\iint_{\Omega} f(x, y) \mathrm{d} x \mathrm{~d} y & =\int_{-1}^{1} \mathrm{~d} x \int_{x-2}^{2 x+1} f(x, y) \mathrm{d} y= \\
& =\int_{-3}^{-1} \mathrm{~d} y \int_{-1}^{y+2} f(x, y) \mathrm{d} x+\int_{-1}^{3} \int_{\frac{1}{2}(y-1)}^{1} f(x, y) \mathrm{d} x
\end{array}\right]
$$

Express the integral $\iint_{\Omega} f(x, y) \mathrm{d} x \mathrm{~d} y$, where $\Omega \subset \mathbb{R}^{2}$ is a finite region bounded by the lines

$$
\frac{1}{3} x-\frac{1}{4} y=1, \quad \frac{1}{5} x-\frac{1}{4} y=1, \quad y=0,
$$

in the terms of two simple integrals in at least one integration order.

$$
\left[\begin{array}{rl}
\iint_{\Omega} f(x, y) \mathrm{d} x \mathrm{~d} y & =\int_{-4}^{0} \mathrm{~d} y \int_{\frac{\frac{3}{4}(y+4)}{\frac{5}{4}(y+4)}} f(x, y) \mathrm{d} x= \\
& =\int_{0}^{3} \mathrm{~d} x \int_{\frac{4}{3}(x-5)}^{\frac{4}{3}(x-3)} f(x, y) \mathrm{d} y+\int_{3}^{5} \mathrm{~d} x \int_{\frac{4}{5}(x-5)}^{0} f(x, y) \mathrm{d} y .
\end{array}\right.
$$

Express the integral $\iint_{\Omega} f(x, y) \mathrm{d} x \mathrm{~d} y$, where the region $\Omega \subset \mathbb{R}^{2}$ is given by the inequalities

$$
3 y<5 x+4, \quad 5 x+4 y<17, \quad y+2>0
$$

in the terms of two simple integrals in at least one integration order.

$$
\left[\begin{array}{rl}
\iint_{\Omega} f(x, y) \mathrm{d} x \mathrm{~d} y & =\int_{-2}^{3} \mathrm{~d} y \int_{-2}^{\frac{1}{5}(17-4 y)} f(x, y) \mathrm{d} x= \\
& \left.=\int_{-2}^{1} \mathrm{~d} x \int_{-2}^{\frac{1}{5}(3 y-4)} \int_{3}^{\frac{1}{3}(5 x+4)} f(x, y) \mathrm{d} y+\int_{1}^{5} \mathrm{~d} x \int_{-2}^{\frac{1}{4}(17-5 x)} f(x, y) \mathrm{d} y .\right]
\end{array}\right.
$$

