Exercise 4 - line integrals

Determine the length of a curve \mathcal{C} given by parametric equations

$$
x=\mathrm{e}^{-4 \varphi} \cos 3 \varphi, \quad y=\mathrm{e}^{-4 \varphi} \sin 3 \varphi, \quad \varphi \in(0, \infty) .
$$

Determine the length of a curve \mathcal{C} given by parametric equations

$$
x=\frac{t}{1+t^{2}}, \quad y=\frac{1}{1+t^{2}}, \quad t \in \mathbb{R}
$$

Determine the length of a curve \mathcal{C} given by parametric equations

$$
x=\cos \varphi \sin \varphi, \quad y=\sin ^{2} \varphi, \quad 0 \leq \varphi \leq \pi .
$$

Determine the length of a curve \mathcal{C} given by the equations

$$
x^{2}+y^{2}=2 y, \quad y \leq x .
$$

Determine the length of a curve \mathcal{C} given by the equations

$$
x^{2}+y^{2}+z^{2}=6, \quad y+z=2 .
$$

Determine the length of a curve \mathcal{C} given by the equations

$$
x^{2}+y^{2}+z^{2}=25, \quad x+2 y=5
$$

Find the length of a curve \mathcal{C} given by parametric equations

$$
x=t-\sin t, \quad y=1-\cos t, \quad 0 \leq t \leq 4 \pi, \quad\left(\text { Hint: it is } 1-\cos t=2 \sin ^{2} \frac{t}{2}\right) .
$$

Find the weight of a curve \mathcal{C} given by parametric equations

$$
x=t \cos t, \quad y=t \sin t, \quad z=t, \quad 0 \leq t \leq \pi
$$

provided its linear density is $\rho(x, y, z)=\sqrt{x^{2}+y^{2}} . \quad\left[\frac{1}{3}((2+\pi) \sqrt{2+\pi}-2 \sqrt{2})\right]$
Find the weight of a curve \mathcal{C} given by parametric equations

$$
x=\mathrm{e}^{-t} \cos t, \quad y=\mathrm{e}^{-t} \sin t, \quad z=\mathrm{e}^{-t}, \quad 0<t<\infty
$$

provided its linear density is $\rho(x, y, z)=\sqrt{x^{2}+y^{2}+z^{2}}$.
Find the weight of a curve \mathcal{C} given by parametric equations

$$
x=\cos t+t \sin t, \quad y=\sin t-t \cos t, \quad z=t, \quad 0 \leq t \leq 1,
$$

provided its linear density is $\rho(x, y, z)=z$.
Find the weight of a curve \mathcal{C} given by parametric equations

$$
x=t-\sin t, \quad y=1-\cos t, \quad 0 \leq t \leq 2 \pi,
$$

provided its linear density is $\rho(x, y)=\sqrt{y}$.
Find the coordinate $z_{c g}$ of a centre of gravity of a homogenous curve $\mathcal{C} \subset \mathbb{R}^{2}$ given by the equations

$$
2 x^{2}+z^{2}=2, \quad y=x, \quad z \geq 0
$$

provided you know that its length is $\sqrt{2} \pi$.

$$
\left[z_{c g}=\frac{2 \sqrt{2}}{\pi}\right]
$$

Find the coordinate $x_{c g}$ of a centre of gravity of a homogenous curve $\mathcal{C} \subset \mathbb{R}^{2}$ given by parametric equations

$$
x=\cos t, \quad y=\sin t, \quad z=1-\ln \cos t, \quad 0 \leq t \leq \frac{1}{3} \pi
$$

provided you know that its length is $\ln (2+\sqrt{3})$.

$$
\left[x_{c g}=\frac{\pi}{3 \ln (2+\sqrt{3})}\right]
$$

Find the coordinate $y_{c g}$ of a centre of gravity of a homogenous curve $\mathcal{C} \subset \mathbb{R}^{2}$ given by parametric equations

$$
x=\cos t, \quad y=\sin t, \quad z=1-\ln \cos t, \quad 0 \leq t \leq \frac{1}{3} \pi
$$

provided you know that its length is $\ln (2+\sqrt{3})$.

$$
\left[y_{c g}=\frac{\ln 2}{\ln (2+\sqrt{3})}\right]
$$

Find the coordinate $y_{c g}$ of a centre of gravity of a homogenous curve $\mathcal{C} \subset \mathbb{R}^{2}$ given by the equation

$$
x^{2}+y^{2}=4 x, \quad y \leq x,
$$

provided you know that its length is 3π.

$$
\left[y_{c g}=-\frac{4}{3 \pi}\right]
$$

Find the coordinate $x_{c g}$ of a centre of gravity of a homogenous curve $\mathcal{C} \subset \mathbb{R}^{2}$ given by the equation

$$
x^{2}+y^{2}=4 x, \quad x \leq y,
$$

provided you know that its length is π.

$$
\left[x_{c g}=\frac{2 \pi-4}{\pi}\right]
$$

Find the coordinate $x_{c g}$ of a centre of gravity of a homogenous curve $\mathcal{C} \subset \mathbb{R}^{2}$ given by parametric equations

$$
x=\cos t+t \sin t, \quad y=\sin t-t \cos t, \quad z=t^{2}, \quad 0 \leq t \leq 2 \pi,
$$

provided you know that its length is $2 \sqrt{5} \pi^{2}$.

$$
\left[x_{c g}=-2\right]
$$

Find the coordinate $y_{c g}$ of a centre of gravity of a homogenous curve $\mathcal{C} \subset \mathbb{R}^{2}$ given by parametric equations

$$
x=\cos t+t \sin t, \quad y=\sin t-t \cos t, \quad z=t^{2}, \quad 0 \leq t \leq 2 \pi,
$$

provided you know that its length is $2 \sqrt{5} \pi^{2}$.

$$
\left[y_{c g}=-\frac{3}{\pi}\right]
$$

Find the coordinate $x_{c g}$ of a centre of gravity of a homogenous curve $\mathcal{C} \subset \mathbb{R}^{2}$ given by parametric equations

$$
x=\mathrm{e}^{-t} \cos t, \quad y=\mathrm{e}^{-t} \sin t, \quad z=\mathrm{e}^{-t}, \quad 0<t<\infty
$$

provided you know that its length is $\sqrt{3}$.

$$
\left[x_{c g}=\frac{2}{5}\right]
$$

Find the coordinate $y_{c g}$ of a centre of gravity of a homogenous curve $\mathcal{C} \subset \mathbb{R}^{2}$ given by parametric equations

$$
x=\mathrm{e}^{-t} \cos t, \quad y=\mathrm{e}^{-t} \sin t, \quad z=\mathrm{e}^{-t}, \quad 0<t<\infty
$$

provided you know that its length is $\sqrt{3}$. $\quad\left[y_{c g}=-\frac{1}{5}\right]$
Find the coordinate $x_{c g}$ of a centre of gravity of a homogenous curve $\mathcal{C} \subset \mathbb{R}^{2}$, which is the boundary of a planar region

$$
0 \leq y \leq x, \quad x^{2}+y^{2} \leq 4,
$$

provided you know that its length is $4+\frac{1}{2} \pi$.

$$
\left[x_{c g}=\frac{4+6 \sqrt{2}}{8+\pi}\right]
$$

A curve $\mathcal{C} \subset \mathbb{R}^{2}$ is the boundary of a planar region

$$
0 \leq y \leq x, \quad x^{2}+y^{2} \leq 4
$$

Find the coordinate $y_{c g}$ of its centre of gravity, provided you know that its length is $4+\frac{1}{2} \pi$. $\left[y_{c g}=\frac{8+2 \sqrt{2}}{8+\pi}\right]$

Find the moment of inertia with respect to the axis z of the piece of a straight line \mathcal{C} from the point $A=[-1,0,-2]$ the point $B=[1,1,0]$, the density of which is equal to one, i.e., the integral

$$
J_{z}=\int_{\mathcal{C}}\left(x^{2}+y^{2}\right) \mathrm{d} s
$$

Find the moment of inertia with respect to the axis z of the curve \mathcal{C} given by equations

$$
x=\cos t+t \sin t, \quad y=\sin t-t \cos t, \quad z=4, \quad 0 \leq t \leq 2 \pi,
$$

provided its density is equal to one, i.e., the integral

$$
J_{z}=\int_{\mathcal{C}}\left(x^{2}+y^{2}\right) \mathrm{d} s
$$

$$
\left[2 \pi^{2}\left(1+2 \pi^{2}\right)\right]
$$

Find the moment of inertia with respect to the axis z of the curve \mathcal{C} given by equations

$$
x=\sin t \cos t, \quad y=\sin ^{2} t, \quad z=t, \quad 0 \leq t \leq \pi,
$$

provided its density is equal to one, i.e., the integral

$$
J_{z}=\int_{\mathcal{C}}\left(x^{2}+y^{2}\right) \mathrm{d} s
$$

Find the moment of inertia with respect to the axis z of the curve \mathcal{C} which is the boundary of the intersection of the set

$$
x+y \geq 0, \quad x-y \geq 0, \quad x^{2}+y^{2} \leq 1
$$

with the plane $z=0$, provided its density is equal to 1 , i.e., the integral

$$
J_{z}=\int_{\mathcal{C}}\left(x^{2}+y^{2}\right) \mathrm{d} s
$$

$$
\left[\frac{1}{6}(4+3 \pi)\right]
$$

Find the line integral

$$
\int_{\mathcal{C}} \frac{\mathrm{d} s}{\sqrt{y}},
$$

where \mathcal{C} is a piece of a straight line from the point $A=[0,4]$ do bodu $B=[3,0]$.

Find the line integral

$$
\int_{\mathcal{C}} \frac{\mathrm{d} s}{\sqrt{x^{2}+y^{2}+z^{2}}}
$$

where \mathcal{C} is a curve given by parametric equations

$$
\begin{equation*}
x=t \sin t+\cos t, \quad y=t \cos t-\sin t, \quad z=2, \quad 0 \leq t \leq 2 . \tag{5}
\end{equation*}
$$

Find the line integral

$$
\int_{\mathcal{C}}(x+y) \mathrm{e}^{x+y+z} \mathrm{~d} s
$$

where \mathcal{C} is a piece of a straight line from the point $A=[1,2,-3]$ to the point $B=[3,1,-1]$. $\left[\frac{1}{3}\left(11 \mathrm{e}^{3}-8\right)\right]$
Find a line integral $\oint_{\mathcal{C}}(x \mathrm{~d} y-y \mathrm{~d} x)$, where \mathcal{C} is a positively oriented boundary of an ellipse $x^{2}+4 y^{2} \leq 4$.
Find a line integral $\int_{\mathcal{C}}(y \mathrm{~d} x-x \mathrm{~d} y)$, where \mathcal{C} is a curve given by parametric equations

$$
x=t-\sin t, \quad y=1-\cos t, \quad 0 \leq t \leq 2 \pi,
$$

oriented in the direction of an increasing parameter.
Find a line integral $\oint_{\mathcal{C}}((x-y) \mathrm{d} x+(x+y) \mathrm{d} y)$, where \mathcal{C} is a positively oriented boundary of the region $\Omega \subset \mathbb{R}^{2}$ given by the inequalities

$$
x+y \geq 0, \quad x-y \geq 0, \quad x^{2}+y^{2} \leq 1 .
$$

Find a line integral $\int_{\mathcal{C}}(y \mathrm{~d} x+x \mathrm{~d} y+z \mathrm{~d} z)$, where \mathcal{C} is a curve given by parametric equations

$$
x=\mathrm{e}^{-\varphi} \cos \varphi, \quad y=\mathrm{e}^{-\varphi} \sin \varphi, \quad z=\varphi \mathrm{e}^{-\varphi}, \quad \varphi \in(0, \infty),
$$

oriented in the direction of an increasing parameter φ.
Find a line integral $\int_{\mathcal{C}}(y \mathrm{~d} x+x \mathrm{~d} z)$, where \mathcal{C} is a curve given by parametric equations

$$
x=t+\cos t, \quad y=\cos t, \quad z=t, \quad t \in\langle 0,2 \pi\rangle
$$

oriented in the direction of an increasing parameter t.

Find a line integral $\int_{\mathcal{C}}(z \mathrm{~d} x-y \mathrm{~d} z)$, where \mathcal{C} is a curve given by the equations

$$
x^{2}+y^{2}=z^{2}, \quad x^{2}+y^{2}=2 x, \quad z \geq 0
$$

oriented such that the second component of its tangent vector in the point $[2,0,2]$ is positive.

Find a line integral $\int_{\mathcal{C}}(x \mathrm{~d} x+z \mathrm{~d} y-2 y \mathrm{~d} z)$, where \mathcal{C} is a curve given by the equations

$$
x^{2}+y^{2}+z^{2}=1, \quad x^{2}+y^{2}=y
$$

which lies in the first octant, i.e., $x, y, z \geq 0$, and starts in the point $[0,0,1]$.
Find a line integral $\int_{\mathcal{C}}(y \mathrm{~d} x-x \mathrm{~d} y+z \mathrm{~d} z)$, where \mathcal{C} is a curve given by the equations

$$
x^{2}+y^{2}=1, \quad x+z=2,
$$

oriented such that the first component of its tangent vector in the point $[0,1,2]$ is positive. $[\pi]$

Find a line integral

$$
\int_{\mathcal{C}}\left(\frac{\mathrm{d} x}{z-y}+\frac{\mathrm{d} y}{x-z}+\frac{\mathrm{d} z}{y-x}\right)
$$

where \mathcal{C} is a straight line segment from the point $A=[1,-5,4]$ the point $B=[-1,-2,5]$. $\left[\ln \frac{7}{2}-\frac{6}{5} \ln 3\right]$

Find a line integral

$$
\oint_{\mathcal{C}}(z \mathrm{~d} x+x \mathrm{~d} y+y \mathrm{~d} z),
$$

where \mathcal{C} is a triangle with the vertices $A=[1,0,0], B=[0,2,0]$ and $C=[0,0,3]$, oriented in the direction $A \rightarrow B \rightarrow C \rightarrow A$.

Let $\mathbf{e}_{1}, \mathbf{e}_{2}$ and \mathbf{e}_{3} be a unit vector in the direction of an axis x, y and z, respectively. Find the work of a force field $\mathbf{f}=z \mathbf{e}_{1}+x \mathbf{e}_{2}+y \mathbf{e}_{3}$ over a straight line segment with the starting point $A=[-1,0,1]$ and the endpoint $B=[3,1,-1]$.

Let \mathbf{i}, \mathbf{j} and \mathbf{k} be a unit vector in the direction of an axis x, y and z, respectively. Find the work of a force field $\mathbf{f}=x z \mathbf{i}-y \mathbf{k}$ over a curve \mathcal{C} given by parametric equations

$$
\mathbf{x}(t)=2 \mathbf{i}+\mathrm{e}^{t} \mathbf{j}+t^{2} \mathbf{k}, \quad 0 \leq t \leq 1
$$

oriented in the direction of an increasing parameter t.

Let $\mathbf{e}_{1}, \mathbf{e}_{2}$ and \mathbf{e}_{3} be a unit vector in the direction of an axis x, y and z, respectively. Find the work of a force field $\mathbf{f}=y z \mathbf{e}_{1}-x z \mathbf{e}_{2}+\left(x^{2}+y^{2}\right) \mathbf{e}_{3}$ over a curve \mathcal{C} given by parametric equations

$$
\mathbf{x}(t)=t \cos t \mathbf{e}_{1}+t \sin t \mathbf{e}_{2}+t^{2} \mathbf{e}_{3}, \quad 0 \leq t \leq \pi,
$$

oriented in the direction of an increasing parameter.

$$
\left[\frac{1}{10} \pi^{4}(5-2 \pi)\right]
$$

Let \mathbf{i}, \mathbf{j} and \mathbf{k} be a unit vector in the direction of an axis x, y and z, respectively. Find the work of a force field $\mathbf{f}=z \mathbf{i}+x \mathbf{j}+2 y \mathbf{k}$ over a curve \mathcal{C} given by parametric equations

$$
x=\ln t, \quad y=t, \quad z=\frac{1}{t}, \quad 1 \leq t \leq 2
$$

oriented in the direction of an increasing parameter t.
Let \mathbf{i}, \mathbf{j} and \mathbf{k} be a unit vector in the direction of an axis x, y and z, respectively. Find the work of a force field $\mathbf{f}=z \mathbf{i}+y \mathbf{k}$ over a curve \mathcal{C} given by parametric equations

$$
x=\cos t, \quad y=t-\sin t, \quad z=t, \quad 0 \leq t \leq 2 \pi,
$$

oriented in the direction of an increasing parameter t.

$$
[2 \pi(\pi+1)]
$$

Let \mathbf{i}, \mathbf{j} and \mathbf{k} be a unit vector in the direction of an axis x, y and z, respectively. Find the work of a force field $\mathbf{f}=y \mathbf{i}-x \mathbf{j}+(x+y) \mathbf{k}$ over a curve \mathcal{C} given by parametric equations

$$
x=t+\cos t, \quad y=t+\sin t, \quad z=\frac{1}{2} t^{2}, \quad 0 \leq t \leq \pi,
$$

oriented in the direction of an increasing parameter t.

$$
\left[\frac{1}{3} \pi\left(2 \pi^{2}-3\right)\right]
$$

Let \mathbf{i}, \mathbf{j} and \mathbf{k} be a unit vector in the direction of an axis x, y and z, respectively. Find the work of a force field $\mathbf{f}=(y+z) \mathbf{i}-(x+z) \mathbf{j}$ over a curve \mathcal{C} given by parametric equations

$$
\mathbf{x}(t)=\mathrm{e}^{-t} \cos t \mathbf{i}+\mathrm{e}^{-t} \sin t \mathbf{j}+\mathrm{e}^{-t} \mathbf{k}, \quad 0 \leq t<\infty
$$

oriented in the direction of an increasing parameter.
Let \mathbf{i}, \mathbf{j} and \mathbf{k} be a unit vector in the direction of an axis x, y and z, respectively. Find the work of a force field $\mathbf{f}=y \mathbf{i}+x \mathbf{j}+z \mathbf{k}$ over the curve given by the equations

$$
x^{2}+2 y^{2}+3 z^{2}=3, \quad x=y,
$$

which starts in the point $A=[1,1,0]$, ends in the point $B=[0,0,1]$ and lies in the first octant, i.e., $x, y, z \geq 0$.

Let \mathbf{i}, \mathbf{j} and \mathbf{k} be a unit vector in the direction of an axis x, y and z, respectively. Find the work of a force field $\mathbf{f}=y \mathbf{i}-x \mathbf{j}+z \mathbf{k}$ over the curve \mathcal{C} given by the equations

$$
x^{2}+y^{2}=1, \quad x y=z
$$

which starts in the point $A=[1,0,0]$, ends in the point $B=[0,1,0]$ and lies in the first octant, i.e., $x, y, z \geq 0$.

Let $\mathbf{e}_{1}, \mathbf{e}_{2}$ and \mathbf{e}_{3} be a unit vector in the direction of an axis x, y and z, respectively. Find the work of a force field $\mathbf{f}=-y \mathbf{e}_{1}+x \mathbf{e}_{2}+z \mathbf{e}_{3}$ over the curve \mathcal{C} given by the equations

$$
x^{2}+y^{2}=1, \quad x^{2}-y^{2}=z, \quad x, y \geq 0
$$

from the point $A=[1,0,1]$ to the point $B=[0,1,-1]$.
Let \mathbf{i}, \mathbf{j} and \mathbf{k} be a unit vector in the direction of an axis x, y and z, respectively. Find the work of a force field $\mathbf{f}=z \mathbf{i}+y \mathbf{k}$ over the curve given by the equations

$$
x^{2}+4 y^{2}=4, \quad z=x y,
$$

oriented such that the first component of the tangent vector in the point $A=[0,1,0]$ is negative.

Let \mathbf{i}, \mathbf{j} and \mathbf{k} be a unit vector in the direction of an axis x, y and z, respectively. Find the work of a force field $\mathbf{f}=y \mathbf{i}-z \mathbf{j}+y \mathbf{k}$ over the curve given by the equations

$$
x^{2}+y^{2}+z^{2}=25, \quad x+2 y=0
$$

oriented such that the first component of the tangent vector in the point $A=[0,0,5]$ is positive.
\qquad
Let \mathbf{i}, \mathbf{j} and \mathbf{k} be a unit vector in the direction of an axis x, y and z, respectively. Find the work of a force field $\mathbf{f}=(2 x-y-z) \mathbf{i}+(2 y-x-z) \mathbf{j}+(2 z-x-y) \mathbf{k}$ over the triangle $A=[1,0,0], B=[0,2,0], C=[0,0,3]$, oriented in the direction $A \rightarrow B \rightarrow C \rightarrow A$.

Let \mathbf{i}, \mathbf{j} and \mathbf{k} be a unit vector in the direction of an axis x, y and z, respectively. Find the work of a force field $\mathbf{f}=y \mathrm{e}^{z} \mathbf{i}+z \mathrm{e}^{x} \mathbf{j}+x \mathrm{e}^{y} \mathbf{k}$ over a straight line segment with the starting point $A=[-1,2,1]$ and the end point $B=[2,3,-1]$. $\quad\left[2 \mathrm{e}^{3}-\frac{73}{9} \mathrm{e}^{2}+\frac{15}{4} \mathrm{e}-\frac{209}{36} \mathrm{e}^{-1}\right]$

Show that the line integral

$$
\int_{\mathcal{C}}\left(x(3 x+2 y) \mathrm{d} x+\left(x^{2}-2 y+3 z\right) \mathrm{d} y+(3 y-2 z+1) \mathrm{d} z\right)
$$

does not depend on the path of integration, and calculate it over the curve \mathcal{C} starting in the point $A=[1,1,1]$ end ending in the point $B=[-1,2,0]$.

Show that the line integral

$$
\int_{\mathcal{C}}((2 x+y-z)(y+z) \mathrm{d} x+(x+2 y+z)(x-z) \mathrm{d} y+(x-y-2 z)(x+y) \mathrm{d} z)
$$

does not depend on the path of integration, and calculate it over the curve \mathcal{C} starting in the point $A=[1,2,3]$ end ending in the point $B=[3,1,2]$.

Show that the line integral

$$
\int_{\mathcal{C}}((\sin y-z \sin x) \mathrm{d} x+(\sin z+x \cos y) \mathrm{d} y+(\cos x+y \cos z) \mathrm{d} z)
$$

does not depend on the path of integration, and calculate it over the curve \mathcal{C} starting in the point $A=[0, \pi, 0]$ and ending in the point $B=[\pi, 0, \pi]$.

Find a potential of a vector field

$$
\mathbf{f}(x, y, z)=\left(2 x+y z, x z+\frac{2 y}{\sqrt{y^{2}-z}}, x y-\frac{1}{\sqrt{y^{2}-z}}\right)
$$

in the region $y^{2}>z$. Using this result, calculate the work \mathbf{f} along a curve \mathcal{C}, which starts in the point $A=[2,1,0]$, ends in the point $B=[1,3,5]$ and lies in the region $y^{2}>z$. $\left[U=x^{2}+x y z+2 \sqrt{y^{2}-z} ; \quad 14\right]$

Find a potential of a vector field

$$
\mathbf{f}(x, y, z)=\left(\frac{y+x \ln z}{x}, \frac{z+y \ln x}{y}, \frac{x+z \ln y}{z}\right)
$$

in the first octant, i.e., for $x, y, z>0$. Using this result, calculate the work \mathbf{f} along a curve \mathcal{C} whith the starting point $A=[1,2,1]$ and the end point $B=[4,1,2]$. $\quad[U=$ $x \ln z+y \ln x+z \ln y ; \quad 5 \ln 2]$

Find a potential of a vector field

$$
\mathbf{f}(x, y, z)=\left(\frac{x}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}}, \frac{y}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}}, \frac{z}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}}\right) .
$$

Using this result, calculate the work \mathbf{f} along a curve \mathcal{C}, which starts in the point $A=$ $[2,-1,2]$, ends in the point $B=[4,0,-3]$ and does not pass through the origin. $\left[U=-\frac{1}{\sqrt{x^{2}+y^{2}+z^{2}}} ;\right.$

