Exercise 5 - surface integrals

Find the surface area of a surface \mathcal{S} given by parametric equations

$$
x=u \cos v, \quad y=u \sin v, \quad z=v, \quad 0<v<u<1 .
$$

$$
\left[\frac{1}{3}(2 \sqrt{2}-1)\right]
$$

Find the surface area of a surface \mathcal{S} given by parametric equations

$$
x=u v, \quad y=\frac{1}{2}\left(u^{2}-v^{2}\right), \quad z=\frac{1}{2}\left(u^{2}+v^{2}\right), \quad u^{2}+v^{2} \leq 2, \quad u, v \geq 0
$$

$$
\left[\frac{1}{2} \sqrt{2} \pi\right]
$$

Find the surface area of a surface \mathcal{S} given by parametric equations

$$
x=2 r \cos ^{2} \varphi, \quad y=r \sin ^{2} \varphi, \quad z=r, \quad 0 \leq \varphi \leq \frac{1}{2} \pi, \quad 0<r<1 .
$$

Find the surface area of a surface \mathcal{S} given by parametric equations

$$
x=\mathrm{e}^{-u} \cos v, \quad y=\mathrm{e}^{-u} \sin v, \quad z=\mathrm{e}^{-u}, \quad 0 \leq v \leq \pi, \quad 0<u<\infty .
$$

Find the surface area of a part of a sphere

$$
x^{2}+y^{2}+z^{2}=25, \quad z \geq 4
$$

Find the surface area of a part of a surface \mathcal{S} given by the equation $z=4+x^{2}+x y-y^{2}$ and lying inside a cylinder $x^{2}+y^{2} \leq 2$.

$$
\left[\frac{2}{15} \pi(11 \sqrt{11}-1)\right]
$$

Find the surface area of a part of a surface \mathcal{S} given by the equation $z=x^{2}+2 y^{2}$ and lying inside an elliptic cylinder $x^{2}+4 y^{2} \leq 1$.

$$
\left[\frac{1}{12} \pi(5 \sqrt{5}-1)\right]
$$

Find the surface area of a part of a surface \mathcal{S} given by the equation

$$
z^{2}=4\left(x^{2}+y^{2}\right), \quad \text { where } 0 \leq z \leq 4
$$

$$
[2 \sqrt{5} \pi]
$$

Find the surface area of a surface \mathcal{S} given by the equation

$$
2 x-2 y+z=1, \quad \text { where } x^{2}+y^{2}+z \leq 1 .
$$

Find the weight of a cylindric surface \mathcal{S} given by the equation

$$
x^{2}+y^{2}=z^{2}, \quad z>0
$$

and having the density $\rho(x, y, z)=\mathrm{e}^{-z^{2}}$.
Find the weight of a surface \mathcal{S} given by parametric equations

$$
x=r \cos \varphi, \quad y=r \sin \varphi, \quad z=\cosh r, \quad 0 \leq \varphi \leq 2 \pi, \quad 0 \leq r \leq 1
$$

and having the density $\rho(x, y, z)=\frac{1}{z} . \quad\left[\begin{array}{l}{[\pi]} \\ \hline\end{array}\right.$
Find the weight of a surface \mathcal{S} given by parametric equations

$$
x=r \cos \varphi, \quad y=r \sin \varphi, \quad z=\varphi, \quad 0 \leq \varphi \leq 2 \pi, \quad 0 \leq r \leq 1
$$

and having the density $\rho(x, y, z)=\sqrt{x^{2}+y^{2}}$. $\quad\left[\frac{2}{3} \pi(2 \sqrt{2}-1)\right]$
Find the weight of a surface \mathcal{S} given by the equation

$$
z=\frac{1}{2}\left(x^{2}+y^{2}\right), \quad z \leq 2
$$

and having the density $\rho(x, y, z)=z$.

$$
\left[\frac{2}{15} \pi(25 \sqrt{5}+1)\right]
$$

Find the weight of a surface \mathcal{S} given by the equation

$$
z=\operatorname{arctg} \frac{y}{x}, \quad x^{2}+y^{2} \leq 1, \quad x \geq 0
$$

and having the density $\rho(x, y, z)=\sqrt{x^{2}+y^{2}}$.

$$
\left[\frac{1}{3} \pi(2 \sqrt{2}-1)\right]
$$

Find the weight of a surface \mathcal{S} given by parametric equations

$$
x=r^{2} \cos \varphi, \quad y=r^{2} \sin \varphi, \quad z=r, \quad 0 \leq \varphi \leq \frac{1}{2} \pi, \quad 1 \leq r \leq 2
$$

and having the density $\rho(x, y, z)=\frac{1}{z} . \quad\left[\frac{1}{24} \pi(17 \sqrt{17}-5 \sqrt{5})\right]$
Find the weight of a surface \mathcal{S} given by the equation

$$
z^{2}=x^{2}-y^{2}, \quad y^{2}+z^{2} \leq 2 y, \quad x, z \geq 0
$$

and having the density $\rho(x, y, z)=z$.
Find the coordinate $z_{c g}$ of a centre of gravity of a half of a homogenous sphere

$$
x^{2}+y^{2}+z^{2}=1, \quad z \geq 0
$$

provided you know that its surface area is equal to 2π.

$$
\left[z_{c g}=\frac{1}{2}\right]
$$

Find the coordinate $y_{c g}$ of a centre of gravity of a homogenous surface \mathcal{S} given by the equation

$$
z=\sqrt{x^{2}+y^{2}}, \quad \text { where } x^{2}+y^{2} \leq 2 x, \quad y \geq 0
$$

provided you know that its surface area is equal to $\frac{1}{2} \sqrt{2} \pi . \quad\left[y_{c g}=\frac{4}{3 \pi}\right]$
Find the coordinate $z_{c g}$ of a centre of gravity of a homogenous surface \mathcal{S} given by the equation

$$
z=x^{2}+y^{2}, \quad 0 \leq z \leq 2,
$$

provided you know that its surface area is equal to $\frac{13}{3} \pi$.

$$
\left[z_{c g}=\frac{74}{65}\right]
$$

Find the coordinate $x_{c g}$ of a centre of gravity of a homogenous surface

$$
z=\operatorname{arctg} \frac{y}{x}, \quad x^{2}+y^{2} \leq 1, \quad x>0
$$

provided you know that its surface area is equal to $\frac{1}{2} \pi(\sqrt{2}+\ln (1+\sqrt{2})) .\left[x_{c g}=\frac{4(2 \sqrt{2}-1)}{3 \pi(\sqrt{2}+\ln (1+\sqrt{2}))}\right]$
Find the coordinate $z_{c g}$ of a centre of gravity of a homogenous triangle with the vertices $A=[2,0,0], B=[0,3,0]$ and $C=[0,0,6]$, provided you know that its surface area is equal to $3 \sqrt{14}$.

$$
\left[z_{c g}=2\right]
$$

Find the coordinate $x_{c g}$ of a centre of gravity of a homogenous triangle with the vertices $A=[4,0,0], B=[0,3,0]$ and $C=[0,0,2]$, provided you know that its surface area is equal to $\sqrt{61}$.
$\left[x_{c g}=\frac{4}{3}\right]$
Find the coordinate $x_{c g}$ of a centre of gravity of a homogenous surface \mathcal{S} given by parametric equations

$$
x=2 r \cos ^{2} \varphi, \quad y=r \sin ^{2} \varphi, \quad z=r, \quad 0 \leq \varphi \leq \frac{1}{2} \pi, \quad 0<r<2,
$$

provided you know that its surface area is equal to 6 .

$$
\left[x_{c g}=\frac{4}{3}\right]
$$

Find the coordinate $z_{c g}$ of a centre of gravity of a homogenous surface \mathcal{S} given by the equation

$$
z^{2}=x^{2}-y^{2}, \quad y^{2}+z^{2} \leq 2 y, \quad x, z \geq 0,
$$

provided you know that its surface area is equal to $\frac{\sqrt{2}}{2} \pi$.

$$
\left[z_{c g}=\frac{4}{3 \pi}\right]
$$

For the surface given by the relations

$$
z=x y, \quad x^{2}+y^{2} \leq 1, \quad x, y \geq 0
$$

find the moment of inertia with respect to the axis z, i.e., the integral

$$
\begin{aligned}
& J_{z}=\iint_{\mathcal{S}}\left(x^{2}+y^{2}\right) \mathrm{d} S \\
& {\left[J_{z}=\frac{1}{15} \pi(\sqrt{2}+1)\right] }
\end{aligned}
$$

For the surface given by the relations

$$
x^{2}+y^{2}+z^{2}=1, \quad z \geq 0
$$

find the moment of inertia with respect to the axis z, i.e., the integral

$$
J_{z}=\iint_{\mathcal{S}}\left(x^{2}+y^{2}\right) \mathrm{d} S
$$

$$
\left[J_{z}=\frac{4}{3} \pi\right]
$$

For the surface given by the relations

$$
4 z^{2}=x^{2}+y^{2}, \quad 0 \leq z \leq 2,
$$

find the moment of inertia with respect to the axis z, i.e., the integral

$$
\begin{aligned}
& J_{z}=\iint_{\mathcal{S}}\left(x^{2}+y^{2}\right) \mathrm{d} S \\
& {\left[J_{z}=16 \sqrt{5} \pi\right] }
\end{aligned}
$$

For the surface given by the relations

$$
x+2 y-2 z=4, \quad x \geq 0, \quad y \geq 0, \quad z \leq 0,
$$

find the moment of inertia with respect to the axis z, i.e., the integral

$$
J_{z}=\iint_{\mathcal{S}}\left(x^{2}+y^{2}\right) \mathrm{d} S
$$

$$
\left[J_{z}=20\right]
$$

For the surface given by the relations

$$
x^{2}+y^{2}+z^{2}=25, \quad z \geq 4
$$

find the moment of inertia with respect to the axis z, i.e., the integral

$$
\begin{aligned}
& J_{z}=\iint_{\mathcal{S}}\left(x^{2}+y^{2}\right) \mathrm{d} S \\
& {\left[J_{z}=\frac{28}{3} \pi\right] }
\end{aligned}
$$

Find the surface integral $\iint_{\mathcal{S}}(x \mathrm{~d} y \mathrm{~d} z+y \mathrm{~d} z \mathrm{~d} x+z \mathrm{~d} x \mathrm{~d} y)$, where \mathcal{S} is a surface given by parametric equations

$$
x=r \cos \varphi, \quad y=r \sin \varphi, \quad z=\varphi, \quad 0 \leq \varphi \leq 2 \pi, \quad 1 \leq r \leq 2
$$

oriented such that the third component of its normal vector is positive.
Find the surface integral $\iint_{\mathcal{S}}(x \mathrm{~d} y \mathrm{~d} z+y \mathrm{~d} z \mathrm{~d} x+z \mathrm{~d} x \mathrm{~d} y)$, where \mathcal{S} is a surface given by parametric equations

$$
x=2 u v, \quad y=u^{2}-v^{2}, \quad z=u^{2}+v^{2}, \quad u^{2}+v^{2} \leq 1, \quad v \geq 0,
$$

oriented such that the third component of its normal vector is positive.
Find the surface integral $\iint_{\mathcal{S}} \mathbf{f} \mathrm{d} \mathbf{S}$, where $\mathbf{f}=(z, 0, x)$ and the surface \mathcal{S} is given by parametric equations

$$
x=\frac{u^{2}}{v}, \quad y=\frac{v^{2}}{u}, \quad z=u v, \quad 1 \leq u \leq 2, \quad 1 \leq v \leq 2
$$

oriented such that the third component of its normal vector is negative. $\left[\frac{45}{4}-7 \ln 2\right]$ Find the surface integral $\iint_{\mathcal{S}}(z \mathrm{~d} y \mathrm{~d} z+y \mathrm{~d} z \mathrm{~d} x+\mathrm{d} x \mathrm{~d} y)$, where \mathcal{S} is a surface given by parametric equations

$$
x=\frac{1}{2}\left(u^{2}+v^{2}\right), \quad y=u v, \quad z=u+v, \quad 0 \leq u \leq v \leq 2
$$

oriented such that the third component of its normal vector is positive.

$$
\left[-\frac{16}{15}\right]
$$

Find the surface integral $\iint_{\mathcal{S}}\left(z \mathrm{~d} y \mathrm{~d} z+y \mathrm{~d} z \mathrm{~d} x+\sqrt{x^{2}+y^{2}} \mathrm{~d} x \mathrm{~d} y\right)$, where \mathcal{S} is a surface given by parametric equations

$$
x=\frac{u}{v}, \quad y=\frac{v}{u}, \quad z=u v, \quad 1<u<4, \quad 1<v<2,
$$

oriented such that the third component of its normal vector is positive.
Find the surface integral $\iint_{\mathcal{S}}(x \mathrm{~d} y \mathrm{~d} z+y \mathrm{~d} z \mathrm{~d} x)$, where \mathcal{S} is the surface

$$
z=x y \quad x, y>0, \quad x+y \leq 1,
$$

oriented such that the third component of its normal vector is positive.

Find the surface integral $\iint_{\mathcal{S}}(x y \mathrm{~d} y \mathrm{~d} z+y z \mathrm{~d} z \mathrm{~d} x+x z \mathrm{~d} x \mathrm{~d} y)$, where \mathcal{S} is a triangle with the vertices $A=[3,0,0], B=[0,2,0]$ and $C=[0,0,6]$, oriented such that the third component of its normal vector is positive.

Find the surface integral $\iint_{\mathcal{S}}(y \mathrm{~d} y \mathrm{~d} z+z \mathrm{~d} x \mathrm{~d} y)$, where \mathcal{S} is a surface

$$
z=x^{2}+y^{2} \quad 0 \leq z \leq 4
$$

oriented such that the third component of its normal vector is positive.
Find the surface integral $\iint_{\mathcal{S}}(x \mathrm{~d} y \mathrm{~d} z+y \mathrm{~d} z \mathrm{~d} x)$, where \mathcal{S} is the surface

$$
x^{2}+y^{2}+z^{2}=1 \quad z \geq 0
$$

\mathcal{S} is oriented such that the third component of its normal vector is positive.
Find the surface integral $\iint_{\mathcal{S}}\left(x \mathrm{~d} z \mathrm{~d} x+\left(z^{2}-1\right) \mathrm{d} x \mathrm{~d} y\right)$, where \mathcal{S} is the surface

$$
x^{2}+y^{2}=1 \quad-1 \leq z \leq 2
$$

oriented such that the first component of a normal vector in the point $A=[1,0,0]$ is positive.

Find the surface integral $\iint_{\mathcal{S}}(x \mathrm{~d} y \mathrm{~d} z+y \mathrm{~d} z \mathrm{~d} x)$, where \mathcal{S} is the surface

$$
x^{2}+y^{2}=1 \quad-1 \leq z \leq 2
$$

oriented such that the first component of a normal vector in the point $A=[1,0,0]$ is negative. $[-6 \pi]$
Find the surface integral $\iint_{\mathcal{S}}((x-y) \mathrm{d} y \mathrm{~d} z+(x+y) \mathrm{d} z \mathrm{~d} x+z \mathrm{~d} x \mathrm{~d} y)$, where \mathcal{S} is the surface

$$
z=x^{2}+y^{2} \quad 0 \leq z \leq 1
$$

\mathcal{S} is oriented such that the third component of its normal vector is positive. $\quad\left[-\frac{1}{2} \pi\right]$
Find the surface integral $\iint_{\mathcal{S}} \mathbf{f} \mathrm{d} \mathbf{S}$, where $\mathbf{f}=(y, x, z)$ and the surface \mathcal{S} is described by the equation

$$
z=4-x^{2}-y^{2}, \quad z \geq 0
$$

\mathcal{S} is oriented such that the third component of its normal vector is negative. $[-8 \pi]$

Find the surface integral $\iint_{\mathcal{S}} \mathbf{f} \mathrm{d} \mathbf{S}$, kde $\mathbf{f}=(y z, x z, x y)$ and the surface \mathcal{S} is described by the equation

$$
x^{2}+y^{2}=4, \quad x^{2}+y^{2}+z^{2} \leq 13, \quad x, y, z \geq 0
$$

\mathcal{S} is oriented such that the first component of its normal vector is negative.
Find the surface integral $\iint_{\mathcal{S}} \mathbf{f} \mathrm{d} \mathbf{S}$, kde $\mathbf{f}=(x, y, z)$ and the surface \mathcal{S} is described by the equation

$$
4\left(x^{2}+y^{2}\right)=(1-z)^{2}, \quad 0 \leq z \leq 1
$$

\mathcal{S} is oriented such that the third component of its normal vector is positive.
Find the surface integral $\iint_{\mathcal{S}} \mathbf{f} \mathrm{d} \mathbf{S}$, kde $\mathbf{f}=(x, y, z)$ and the surface \mathcal{S} is described by the equation

$$
z\left(x^{2}+y^{2}\right)=1, \quad 1 \leq z \leq 4
$$

\mathcal{S} is oriented such that the third component of its normal vector is positive. $[6 \pi \ln 2]$
Let \mathbf{i}, \mathbf{j} and \mathbf{k} be a unit vector in the direction of an axis x, y and z, respectively. Find the flux of the vector $\mathbf{v}=y \mathbf{i}-x \mathbf{j}+z^{2} \mathbf{k}$ through the surface \mathcal{S} given by parametric equations

$$
\mathbf{x}=r \cos t \mathbf{i}+r \sin t \mathbf{j}+r^{2} \mathbf{k}, \quad 0<t<\pi, \quad 0<r<1,
$$

and oriented such that the third component of its normal vector is positive. $\quad\left[\frac{1}{3} \pi\right]$
Let \mathbf{i}, \mathbf{j} and \mathbf{k} be a unit vector in the direction of an axis x, y and z, respectively. Find the flux of the vector $\mathbf{v}=y \mathbf{i}+x \mathbf{j}+z \mathbf{k}$ through the surface \mathcal{S} given by parametric equations

$$
x=r \cos ^{2} t, \quad y=r \sin ^{2} t, \quad z=r^{2}, \quad 0 \leq r \leq 1, \quad 0 \leq t \leq \frac{1}{2} \pi
$$

and oriented such that the third component of its normal vector is positive.
Let \mathbf{i}, \mathbf{j} and \mathbf{k} be a unit vector in the direction of an axis x, y and z, respectively. Find the flux of the vector $\mathbf{v}=y \mathbf{i}-x \mathbf{k}$ through the surface \mathcal{S} given by the equation

$$
x^{2}+y^{2}=4, \quad 0 \leq z \leq 3, \quad x, y>0
$$

and oriented such that the third component of its normal vector is negative. $\quad\left[-\frac{3}{2}\right]$
Let \mathbf{i}, \mathbf{j} and \mathbf{k} be a unit vector in the direction of an axis x, y and z, respectively. Find the flux of the vector $\mathbf{v}=y \mathbf{i}-x \mathbf{j}+z \mathbf{k}$ through the surface \mathcal{S} given by the equation

$$
z=x^{2}+y^{2}, \quad z \leq 4
$$

and oriented such that the third component of its normal vector is positive.

Let \mathbf{i}, \mathbf{j} and \mathbf{k} be a unit vector in the direction of an axis x, y and z, respectively. Find the flux of the vector $\mathbf{v}=y \mathbf{i}-x \mathbf{j}+z \mathbf{k}$ through the surface \mathcal{S} given by the equation

$$
z=1-\sqrt{x^{2}+y^{2}}, \quad x, y, z \geq 0
$$

and oriented such that the third component of its normal vector is positive. $\quad\left[\frac{1}{12} \pi\right]$
Let \mathbf{i}, \mathbf{j} and \mathbf{k} be a unit vector in the direction of an axis x, y and z, respectively. Find the flux of the vector $\mathbf{v}=x \mathbf{i}+y \mathbf{j}+z \mathbf{k}$ through the surface \mathcal{S} given by the equation

$$
x^{2}+4 y^{2}=z^{2}, \quad 0 \leq z \leq 2
$$

and oriented such that the third component of its normal vector is negative.
Let \mathbf{i}, \mathbf{j} and \mathbf{k} be a unit vector in the direction of an axis x, y and z, respectively. Find the flux of the vector $\mathbf{v}=x \mathbf{i}+y \mathbf{j}+z \mathbf{k}$ through the surface \mathcal{S} given by the equation

$$
z=1-\sqrt{x^{2}+y^{2}}, \quad 0 \leq z \leq 1
$$

and oriented such that the third component of its normal vector is positive.
Let \mathbf{i}, \mathbf{j} and \mathbf{k} be a unit vector in the direction of an axis x, y and z, respectively. Find the flux of the vector $\mathbf{v}=x \mathbf{i}+y \mathbf{j}$ through the surface \mathcal{S} given by the equation

$$
z^{2}=4 x^{2}+y^{2}, \quad 0 \leq z \leq 2
$$

and oriented such that the third component of its normal vector is negative. $\quad\left[\frac{8}{3} \pi\right]$
Let \mathbf{i}, \mathbf{j} and \mathbf{k} be a unit vector in the direction of an axis x, y and z, respectively. Find the flux of the vector $\mathbf{v}=y \mathbf{i}+x \mathbf{j}+z \mathbf{k}$ through the surface \mathcal{S} given by the equation

$$
x+y=z^{2}, \quad y, z \geq 0, \quad y+z \leq 2
$$

and oriented such that the third component of its normal vector is positive.
Let \mathbf{i}, \mathbf{j} and \mathbf{k} be a unit vector in the direction of an axis x, y and z, respectively. Find the flux of the vector $\mathbf{v}=x \mathbf{j}+z \mathbf{k}$ through the surface \mathcal{S} given by the equation

$$
z=1-x^{2}-y^{2}, \quad z \geq 0
$$

and oriented such that the third component of its normal vector is positive.
Let \mathbf{i}, \mathbf{j} and \mathbf{k} be a unit vector in the direction of an axis x, y and z, respectively. Find the flux of the vector $\mathbf{v}=x \mathbf{i}+y \mathbf{j}+z \mathbf{k}$ through a part of a plane which contains the points $A=[1,0,0], B=[0,2,0]$ and $C=[0,0,3]$, lies in the first octant, i.e., $x, y, z \geq 0$, and oriented such that the third component of its normal vector is positive.

Find the surface integral $\iint_{\mathcal{S}} \mathbf{f} \mathrm{d} \mathbf{S}$, where

$$
\mathbf{f}=\left(x^{2}+x y+y^{2}, y^{2}+y z+z^{2}, x^{2}+x z+z^{2}\right)
$$

and the surface \mathcal{S} is a positively oriented boundary of a tetrahedron

$$
x \geq 0, \quad y \geq 0, \quad z \geq 0, \quad x+y+z \leq 1
$$

Find the surface integral

$$
\iint_{\mathcal{S}}\left(\left(x^{2}+y z\right) \mathrm{d} y \mathrm{~d} z+\left(y^{2}+x z\right) \mathrm{d} z \mathrm{~d} x+\left(z^{2}+x y\right) \mathrm{d} x \mathrm{~d} y\right)
$$

where \mathcal{S} is a half of a positively oriented sphere

$$
x^{2}+y^{2}+z^{2} \leq 1, \quad z \geq 0
$$

Let \mathbf{i}, \mathbf{j} and \mathbf{k} be a unit vector in the direction of an axis x, y and z, respectively. Find the flux of the vector $\mathbf{v}=x y \mathbf{i}+y z \mathbf{j}+x z \mathbf{k}$ through a positively oriented surface of a cylinder

$$
x^{2}+y^{2} \leq 4, \quad 0 \leq z \leq 1
$$

Let \mathbf{i}, \mathbf{j} and \mathbf{k} be a unit vector in the direction of an axis x, y and z, respectively. Find the flux of the vector $\mathbf{v}=x^{2} \mathbf{i}+y z \mathbf{j}+x y \mathbf{k}$ through the surface of a solid

$$
x^{2}+y^{2} \leq z^{2}, \quad 0 \leq z \leq 1
$$

oriented such that the third component of its normal vector on the plane $z=1$ is positive.

