LECTURE 1

INDEFINITE
INTEGRAL



1.1 Primitive function

Definition 1. Let f be a function defined on an open (boun-
ded or unbounded) interval (a, b) . Any function F' such that

F'(z) = f(x) forall z € (a,b),

is called a primitive function to the function f on the
interval (a,b) .

& Example 1.1.

(a) F(x)= ;x* is aprimitive functionto f(x) = x* on the

interval (—oo, +00) .

(b) F(x) = —x~!is a primitive function to f(x) = =2 on
the interval (—oco,0) and on the interval (0, +o0), but
not e.g. on (—1,5) that contains 0 ¢ Dy .



Remark. If F is a primitive function to f on the interval (a,b),
then also any function of the form G(x) = F(x) + ¢, where
c € R is any constant, is a primitive function to f on (a, b). The
following theorem states that in this way, all primitive functions
are exhausted:

Theorem. If F, G are any two primitive functions to a function
f on an interval (a, b), then there exists a constant ¢ € R such
that

G(z) = F(x) +c

forallx € (a,b).

Proof. Consider a function H(xz) = G(x) — F(«). Functions
F, G are primitive functions to f, thus

H'(z) = (G(z) - F(2))' = G'(z)—F'(z) = f(x)—f(x) = 0.

According to the Cauchy Mean Theorem, H (x) is constant on
(a,b),ie., H(z) =c.



Definition 2. The set of all primitive functions (if it is
non-empty) to a function f on an interval (a, b) is called
an indefinite integral of the function f on the inter-
val (a, b) and it is denoted by the symbol [ f or [ f(x) dx .

Remark. If F is a primitive function to a function f on (a, d), we
write

/f(a:) dz = F(x) + c.

The constant c is called a constant of integration.



Theorem (Additivity of an integral with respect to the domain of
integration).

1. If a function f has an integral on an interval (a,b) and I is an
open subinterval of (a, b), then f has an integral on I, too.

2. If a function f has an integral on intervals I, I, - - - , I,, and if
theirunionI = I UI,U- - -U I, is an interval, then the function
f has anintegralon I .

Theorem (Indefinite integral of a continuous function).
If a function f(x) is continuous on an interval {a, by, then there exists
its primitive function on (a, b).

Theorem (Indefinite integral of a derivative).
If f'(x) is continuous on an interval (a, b), it is

[ #(2) dz = f(z) +c.



Theorem (Linearity of an integral)

1. Let F, G be primitive functions on an interval (a,b) to f,
g, letr be a number. Then F + G is a primitive function to
f + g andrF is a primitive function to r f on (a, b).

2. Let f, g have indefinite integrals on an interval (a,b), let r
be a number. Then f + g and r f have indefinite integrals
on (a, b), too, and the following equalities are satisfied:

J(f(x) +g(z))dz = [ f(z)dz+ [g(z)dz,
[rf(x)de = r [ f(x)de.
3. Letfunctions fy, f2,- -+ , fm have indefinite integrals on (a, b),
letry,rq, - -+ , 7, be any constants. Then the functionry f1+

rofe + -+ - + r f has an indefinite integral, too, and the
following equality is satisfied:

J(rifi(@)+rafa(x)+ - Arnfa(z)) de =
=711 [ f1i(z)de+rs [ fo(z) de+- - -+, [ fro(z) de.



1.2 Fundamental integration formulas

The well-known formulas from the differential calculus imply:

wn—i—l
1) /az"da:: + ¢, zr€R for n€Z, n> 0;
n-+1
x€eR\{0}, neZ, n<—1,
x>0 for neR, nd&lZ.
dx
2) /?zln|w|—|—c, z € R\ {0}.
3) /e“’dm:e“’—{—c; x € R.
aw
4) /awdw: + ¢, rER, a>0,a#l.
Ina

5) /sinzcda: = —cosz+ec, x€R.

6) /cosmdw:sinw—l—c, x € R.



1
7) / 5 dx = tanx + ¢,
cos2 - -

1
8) / ——dx = —cotx + c,
sin“ x
x € (2km, 2k + 1)7), k € Z.

arcsinx + c,

1
9 /—dw: x e (—1,1).
) V1 — a2 { — arccosx + c, (=1,1)

1 arctanx + c,
10) / dz = x € R.

14 a2 —arccot = + c,
11) /coshwda} = sinhx + ¢; x € R.
12) /sinhajdw = coshz + ¢; x € R.



1
13) / ;—dz = tanhx + ¢,
cosh “x

1
14) / ——— dx = cothz + c,
sinh “x

1
15) /ﬁdm = argsinhx + ¢ = In <m—|— \/:c2—|—1) +c

x = argcoshx + c = In

RS

1

1 1 1+
17) / dz = —In + ,
1— a2 2 1—=x
1+ r+1
In i = argtanhx, In i = argcoth x
1—=x r—1



& Example 1.2.

Find the following integrals:
(@ I= [(bx*—22®>—3x+T7)dx
Solution. Due to the linearity of an integral, we can write:

I=[(5z*—22—3x+T7)dx =
=5[a*de—2 [23de —3 [zde+7[1de =

x5 x? x?
:5(34—01)—2(24—@)—3<?+c4>—|—7(:13—|—c5)=

1 3
:w5—§w4—§a:2—|—7a:—|—c, xz € R.
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(b) I:/2:c3—3\/5—|—5d

xr

xr

Solution. We can divide the numerator by the denomi-
nator and then use the basic formulas:

I_/2:v3—3\/5—i—5
£

de = [(222—3z 245z~ 1) dz =

:2fw2dw—3fa:_%da:—|—5faz_1d:c:

3 x2
:2(3"‘01) _3<T+C2> + 5 (Infz| + c3) =

2

2
:§w3—6\/5—|—1n|:v|—|—c, x € (0,400).
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(c) I=[e**dx

Solution. Notice that (e**)’ = 4e**. To obtain the given
function after the differentiation of the result, it must be

4x

I:fe“‘”d:n:ej—l—c, xz € R.
(d I=[cos(3z—2)dx
Solution. Since (cos (3x — 2))" = 3sin (3z — 2), itis:
sin (3x — 2)

I:fcos(Sw—Z)dw:#—l—c, r €R.
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1.3 Integration per partes (by parts)

Theorem (ltegration per partes). Let functions u, v have con-
tinuous derivatives on an interval (a, b). Then

[u/ (x)v(z) dze = u(z)v(xz) — [u(z)v'(z)dx. (1.1)

Proof. The formula for the derivative of a forduct implies:
(wv) =v'v+uwv’  on (a,b),

thus
J(uvy = [(u'o+uw)
w+c = [vwv+ [ur
[u'v = wv— [uw' +e¢c

The last equality is equivalent with the stated formula.
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Application | — simplification of the given function
& Example 1.3.
Find the integral [« cosx dx .

Solution. To simplify the function that should be integrated, let
us choose z for the differentiation:

u' =cosx, u=sinzx
[xcoszdr = =
v==x, v =1

=xsinx — [sinzdz = zsinz 4 cosz + ¢, r €R.
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& Example 1.4.

Find the integral [ z?sinx dx.

Solution. Bt a repeated differentiation of =2 we simplify the inte-
grand to a single goniometric function:

) u' =sinx, u= —cosx
[x?sinxdx = =
v =x2, v =2z
= x*(— cos x)— [2x(—cosz)de = —z?cosz+2 [ x cosz dz =

u' =cosx, u=sinz 5 ) )
= —x“cosx+2 (wsmw — fsmwda:) :

v=2=x, v =1

=—:c2coszc—|—2zcsin:c—|—2cos:c—|—c, z € R.
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& Example 1.5.
Find the integral [ (? + 2x — 5) e** dx.

Solution.

[ (2* + 2z — 5)e** dx =

’LL’ — e3:c ,

1_3x

u = e

%(az2—|—2m—5)e3w—%f(2w—|—2)e3wdm:

1
3

1
3

(:1:2 + 22 — 5) e3® — % (%(23} + 2)e®* —

3

v=x?>4+2x—-5, vV=2x+2

ul:e3m, u = %e3m

v=2x+2, vV=2
2 .3z —
L[ ot do) =

(m2 + 22 — 5) e3® — % (%(2&: + 2)e®* — %e?’m)

= G+ 4o

49

27

)e3m+c,

+c=

xz € R.
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& Example 1.6.
Find the integral [ x?e®* dx .

Solution.
u/:eSw, ’U,:%G&B
[ x?e’® da = =
v=ux3, v =32
’ 5x 1 _5x
u' =e’™, u= ;e
5
— 1,.3.52 _ §fa:2e5“’ de — —
5 5 2 ’
v=zx°, v =2
’ 5x 1 _5x
u =e u = e
1,3 5z 3 (1.2 5z 2 5z _ ? 5
= cx’e 5(5586 s [ xe dz) = )
v=x, vV=1
_1,35c _ 3_.25c , 6 (1_ 55 1 5 _
=zre 25T € +25(5:ce 5fe dm)—
1.3 .5z _ 3,2 5= 6 5 _ 6 _5x
= ;xr’e sx e’ + oowe 256t ¢, x e R.
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Remark. In the previous examples, we have calculated:

f(a:2+2w—5)e3‘”dw—(1 2—|——w ) e+ c,

fa.:SeSm dx = (%m3 23 2 + ﬁm _ ﬁ) 59: +c.

In general:
[ P(z)ek* dz = Q(x)er™ .

Similar exercises can therefore be solved without a repeated in-
tegration by parts simply by finding a polynomial Q(x) such that

(Q(w)ekm), = P(x)e*™.
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& Example 1.7.

Using the estimation method, find the integral [ (2 4+ 2z — 5) e** dx

Solution.

[ (2* + 2z — 5) e** de = (Axz® 4+ Bx + C) &3®.

It is sufficient to find constants A, B, C such that
((Az® + Bz + C) e3w)/ = (2 + 2z — 5) °*,
thus
(2Az + B) e** + (Ax® + Bz + C) - 3¢*® = (a® + 2z — 5) &%
(342 4+ (2A + 3B)x + (B + 3C)) ** = (2?4 2z — 5) ®

3Ax* + (2A + 3B)x + (B + 30) =x?4+2x—5
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3Az* + (2A+3B)x + (B+3C)=x*+2x—5

To obtain equal functions on both sides, the coefficients by the
same powers of  must be equal:

x? ... 3A =1
x' ... 2A+3B = 2
z° ... B+3C = -5

The solution of this system of linear equations is

A=l B=% Cc=-%

— 57

W=

thus

J (x® + 2z — 5) e**da = (%mz—k%w—%)e&”—kc.



& Example 1.8.
Find the integral [ z°Inxdx.

Solution. Notice that the given function will be simplified by the
differentiation of Inx :

x
u =x°, U= 6
[’ Inzde = ——a:ﬁlna:——f—da:—
1
v=Inx, v =—
x
— Inx — 1jqzzz5d:13—€13 SIlnx — 6—|—c, r €R
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& Example 1.9.

Find the integral [Inzdx.

Solution. The given function does not look like a product. Ne-
vertheless, we can again use the integration by parts. It would we

helpful to replace In x by its derivative 1/« . To achieve this, it is
sufficient to consider the integrand as a product 11lnx :

[1lnzde = 1
v=Ilnx, v =—
x

zazlnm—ffdw:a:lnw—flda::wlna:—aH—C, r €ER.
x
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Indirect determination of an indefinite integral:
per partes leading to the solution of an equation

In some cases we can avoid a direct integration by the repeated
use of per partes method and solving a simple equation for the
integral (typical cases cover e”, sin x, cos x.:

I =h(z)+kI.
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& Example 1.10.

Find the integral [ e® cosz dx.

Solution.
u=e", u=4¢€"
fe”” cosxdx = =
v=cosx, v V= —sinx
u =e", u=¢e€"

=e”cosz + [e®sinxdx = =
v=sinx, v/ =cosx

=e%cosx + (e“’sinar;— femcoswdm)

Thus we have obtained an equation

[e*coszdr = e®cosxz +e®sinx — [e” coszdx
Zfewcosa:dm = ePcosx +e*sinx

T 1 €T €T .
[e*coszdr = — (e®cosz + e”sinx)

2



Remark. Integrals of the type [ **(P(x) cos wx+Q(x) sinwz) dz
where P(x) are Q(x) polynomials of degree n,; and na, re-
spectively, and k and w are not both equal to zero, are always
equal to

[ e*®(P(x) coswz + Q(x) sinwz) de =

e**(R(x) coswzx 4 S(z) sin wzx),

where R(x) and S(x) are polynomials of degree n = max(ny; n2)
with unknown coefficients that can be found with the use of a de-
rivative — see p. 19.
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& Example 1.11.
Find the integral [ e™*(3 cos 2z — (4z + 1) sin 2z) dz .

Solution.
We are looking for the solution in the form

e ?((Az 4+ B) cos2x + (Cx + D) sin2x) .

Using a derivative and comparing the coefficients by particular
powers of  we obtain

[ e *(3cos2x — (4 + 1) sin 2x) da =

=e® ((g:c + ;—;) cos 2x + (‘—;w + %) sin 2:1:) .

26



Remark.
Integrals of the type

[sinax cosbxdz, |[sinaz sinbxdex,

[ cosax cosbxdx, a #b,

can be solved using a multiple use of the per partes method, or
we can simplify the function using the formulas

sina cos 8 = (sin(a + B) + sin(a — 3))/2,
sin a sin 3 = (cos(a — B) — cos(a + 3))/2,
cos a cos B = (cos(a + B) + cos(a — 3))/2.

& Example
/sin 5x cosxdx = (1/2) /(sin 6x + sindx) dx =

= —(1/12) cos 6 — (1/8) cos4x + c.

27



1.4 Substitution in the indefinite integral

Theorem (The first theorem on the substitution) Let the in-
tegral on the left side of the equation

[ f(@)dz = [ f(p(t))¢ (1) dt (1.2)

exists on an interval J and is equal to F(x). Letx = ¢(t) have a
continuous derivative on an interval ¢(I) C J. Then the integral
on the right side of the equation (1.2) exists on I and is equal to
F(p(t)).

Proof. Let F be a primitive function to a function f on an interval
J. Since ¢ maps the interval I to the interval J, the composite
functions F'(¢(t)) and f(¢(t)) are defined on I and the rule for
the derivative of a composite function implies

S Re) = Fle0)e(1) = Fe)@(1), teL

28



Remark. The previous theorem is useful in the cases where the
integral is "prepared"in the form

[ Fe(t)e’(t) dt.

& Example 1.12.
Find the integral [ e**+3dt.

Solution. The integrand is continuous in R , the integral therefore
existuje. Denote

x = p(t) = 5t + 3, de = ¢'(t)dt = 5dt.

All assumptions of the theorem on the substitution are satisfied
and we can write:

[eT3dt =1 [e"35dt = £ [e*dx = ze® +c =

— %e5t+3—|—c, teR.
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& Example 1.13.

Find the integral /—dt
(et +2)°

Solution. The given function is continuous in R, the integral the-
refore exists in R ,. Similarly as in the previous example,

el r =e +2 1 s
——dt = = | —dex= [z 7dx =
(et + 2)° de = et dt x?
=7 o= +e= " tec, teR
=2 22 2(et +2)2

Remark. Of course, it does not matter which letters are used for
the variables.
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& Example 1.14.
(Inx)

T - \/(5—|—ln2a:)3

dz on I = (0, +oc0).

Find the integral /

Solution.
1
/ (In z) dr = / (In a:) d:v =
x-1/(54+1nx)3 \/ (5 + In® )3
1 1 1 t=5+1In2z
— _/ (21In a:) dr = 1 =
2 /(5 + In? z)3 = (21nw);dw

1 . t—3
dt == [t z2dt = +ec=—-2vVtd+ec=
w=3)

—2vV5+In*x+¢c, x€ (0, +00) .
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Theorem (The second theorem on the substitution) Let the
integral on the left side of the equation

[ Fe®)¢'(t)dt = [ f(x) da (1.3)

exist on an interval I and is equal to F'(t), let a function x = ¢ (t)
be such that it has a non-zero derivative at each point of I a maps
I toJ = (I). Then the integral on the right side of the equation
(1.3) exists on J and is equal to F(v(x)), where ¥(x) is an
inverse function to the function x = ¢(t).

Proof. The function ¢ is invertible on I. Denote its inverse function
by t = ¢ (). This function maps an interval J on an interval I.
According to the assumption, there exists a function G such that
G'(t) = f(p(t)$'(t), t € I.Denote

F(z) = G(¢(z)) -

The rule for the derivative of a composite function implies that
F'(x) = G'(¢(x))y'(z) = G'(1)¢'(z) = fe(t))¢'(t)-1/¢'(t) =

f(x),z e J. 30



Remark. Instead of ¢’(t) # 0 for all t € I it is sufficient to
require that ¢ is strictly monotonous and ¢’(t) = 0 for at most a
finite number of values of t € I.

& Example 1.15.

Find the integral [ \/%dw,w € (—1,1).
Solution. The integrand is continuous on the interval J = (—1, 1),
the integral therefore exists takze integral on J. To remove the
square root, we can use the identity cos?t = 1 — sin®t and the
substitution:
x = p(t) =sint; ¢(t) maps (—=/2,7/2)on (—1,1);
dx = costdt; @'(t) = (sint)’ = cost # 0;
V1 —x2 = |cost| = cost > 0;

t = arcsinx

f 5 d / 5
- €T —=
V1 — x2 cost

costdt=5/1dt:5t—|—c=

= 5arcsinz +t, =z € (—1,1).
33
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