LECTURE 1

INDEFINITE

 INTEGRAL
1.1 Primitive function

Definition 1. Let f be a function defined on an open (bounded or unbounded) interval $(\boldsymbol{a}, \boldsymbol{b})$. Any function \boldsymbol{F} such that

$$
F^{\prime}(x)=f(x) \quad \text { for all } x \in(a, b)
$$

is called a primitive function to the function f on the interval (a, b).

- Example 1.1.
(a) $\boldsymbol{F}(x)=\frac{1}{4} x^{4}$ is a primitive function to $f(x)=x^{3}$ on the interval $(-\infty,+\infty)$.
(b) $\boldsymbol{F}(x)=-x^{-1}$ is a primitive function to $f(x)=x^{-2}$ on the interval $(-\infty, 0)$ and on the interval $(0,+\infty)$, but not egg. on $(-1,5)$ that contains $0 \notin D_{f}$.

Remark. If \boldsymbol{F} is a primitive function to f on the interval (a, b), then also any function of the form $G(x)=F(x)+c$, where $c \in \mathbb{R}$ is any constant, is a primitive function to f on (a, b). The following theorem states that in this way, all primitive functions are exhausted:

Theorem. If $\boldsymbol{F}, \boldsymbol{G}$ are any two primitive functions to a function f on an interval (a, b), then there exists a constant $c \in \mathbb{R}$ such that

$$
G(x)=F(x)+c
$$

for all $x \in(a, b)$.
Proof. Consider a function $H(x)=G(x)-F(x)$. Functions F, G are primitive functions to f, thus
$H^{\prime}(x)=(G(x)-F(x))^{\prime}=G^{\prime}(x)-F^{\prime}(x)=f(x)-f(x)=0$.
According to the Cauchy Mean Theorem, $\boldsymbol{H}(\boldsymbol{x})$ is constant on (a, b), ie., $H(x)=c$.

Definition 2. The set of all primitive functions (if it is non-empty) to a function f on an interval (a, b) is called an indefinite integral of the function f on the interval (a, b) and it is denoted by the symbol $\int f$ or $\int f(x) \mathrm{d} x$.

Remark. If \boldsymbol{F} is a primitive function to a function f on (a, b), we write

$$
\int f(x) \mathrm{d} x=F(x)+c .
$$

The constant c is called a constant of integration.

Theorem (Additivity of an integral with respect to the domain of integration).

1. If a function f has an integral on an interval (a, b) and I is an open subinterval of (a, b), then f has an integral on I, too.
2. If a function f has an integral on intervals $I_{1}, I_{2}, \cdots, I_{m}$ and if their union $I=I_{1} \cup I_{2} \cup \cdots \cup I_{m}$ is an interval, then the function f has an integral on I.

Theorem (Indefinite integral of a continuous function).
If a function $f(x)$ is continuous on an interval $\langle a, b\rangle$, then there exists its primitive function on (a, b).

Theorem (Indefinite integral of a derivative). If $f^{\prime}(x)$ is continuous on an interval (a, b), it is

$$
\int f^{\prime}(x) \mathrm{d} x=f(x)+c .
$$

Theorem (Linearity of an integral)

1. Let \boldsymbol{F}, G be primitive functions on an interval (a, b) to f, g, let r be a number. Then $\boldsymbol{F}+\boldsymbol{G}$ is a primitive function to $f+g$ and $r \boldsymbol{F}$ is a primitive function to $r f$ on (a, b).
2. Let f, g have indefinite integrals on an interval (a, b), let r be a number. Then $f+g$ and $r f$ have indefinite integrals on (a, b), too, and the following equalities are satisfied:

$$
\begin{aligned}
\int(f(x)+g(x)) \mathrm{d} x & =\int f(x) \mathrm{d} x+\int g(x) \mathrm{d} x, \\
\int r f(x) \mathrm{d} x & =r \int f(x) \mathrm{d} x .
\end{aligned}
$$

3. Let functions $f_{1}, f_{2}, \cdots, f_{m}$ have indefinite integrals on (a, b), let $r_{1}, r_{2}, \cdots, r_{m}$ be any constants. Then the function $r_{1} f_{1}+$ $r_{2} f_{2}+\cdots+r_{m} f_{m}$ has an indefinite integral, too, and the following equality is satisfied:

$$
\begin{aligned}
& \int\left(r_{1} f_{1}(x)+r_{2} f_{2}(x)+\cdots+r_{n} f_{n}(x)\right) \mathrm{d} x= \\
& \quad=r_{1} \int f_{1}(x) \mathrm{d} x+r_{2} \int f_{2}(x) \mathrm{d} x+\cdots+r_{n} \int f_{n}(x) \mathrm{d} x
\end{aligned}
$$

1.2 Fundamental integration formulas

The well-known formulas from the differential calculus imply:

1) $\int x^{n} \mathrm{~d} x=\frac{x^{n+1}}{n+1}+c$,

$$
\begin{aligned}
& x \in \mathbb{R} \text { for } n \in \mathbb{Z}, n>0 \\
& x \in \mathbb{R} \backslash\{0\}, n \in \mathbb{Z}, n<-1, \\
& x>0 \text { for } n \in \mathbb{R}, n \notin \mathbb{Z} .
\end{aligned}
$$

2) $\int \frac{\mathrm{d} x}{x}=\ln |x|+c$, $x \in \mathbb{R} \backslash\{0\}$.
3) $\int e^{x} \mathrm{~d} x=e^{x}+c$; $x \in \mathbb{R}$.
4) $\int a^{x} \mathrm{~d} x=\frac{a^{x}}{\ln a}+c, \quad x \in \mathbb{R}, a>0, a \neq 1$.
5) $\int \sin x \mathrm{~d} x=-\cos x+c, x \in \mathbb{R}$.
6) $\int \cos x \mathrm{~d} x=\sin x+c, \quad x \in \mathbb{R}$.
7) $\int \frac{1}{\cos ^{2} x} \mathrm{~d} x=\tan x+c$,

$$
x \in\left((2 k-1) \frac{\pi}{2},(2 k+1) \frac{\pi}{2}\right), k \in \mathbb{Z}
$$

8) $\int \frac{1}{\sin ^{2} x} \mathrm{~d} x=-\cot x+c$,

$$
x \in(2 k \pi,(2 k+1) \pi), k \in \mathbb{Z}
$$

9) $\int \frac{1}{\sqrt{1-x^{2}}} \mathrm{~d} x=\left\{\begin{array}{r}\arcsin x+c, \\ -\arccos x+c,\end{array} \quad x \in(-1,1)\right.$.
10) $\int \frac{1}{1+x^{2}} \mathrm{~d} x=\left\{\begin{array}{r}\arctan x+c, \\ -\operatorname{arccot} x+c,\end{array} \quad x \in \mathbb{R}\right.$.
11) $\int \cosh x \mathrm{~d} x=\sinh x+c$; $x \in \mathbb{R}$.
12) $\int \sinh x \mathrm{~d} x=\cosh x+c$;
$x \in \mathbb{R}$.
13) $\int \frac{1}{\cosh ^{2} x} \mathrm{~d} x=\tanh x+c$,
14) $\int \frac{1}{\sinh ^{2} x} \mathrm{~d} x=\operatorname{coth} x+c$,
15) $\int \frac{1}{\sqrt{x^{2}+1}} \mathrm{~d} x=\operatorname{argsinh} x+c=\ln \left(x+\sqrt{x^{2}+1}\right)+c$
16) $\int \frac{1}{\sqrt{x^{2}-1}} \mathrm{~d} x=\operatorname{argcosh} x+c=\ln \left(x+\sqrt{x^{2}-1}\right)+c$
17) $\int \frac{1}{1-x^{2}} \mathrm{~d} x=\frac{1}{2} \ln \left|\frac{1+x}{1-x}\right|$,
$\ln \sqrt{\frac{1+x}{1-x}}=\operatorname{argtanh} x, \quad \ln \sqrt{\frac{x+1}{x-1}}=\operatorname{argcoth} x$

- Example 1.2.

Find the following integrals:
(a) $\quad I=\int\left(5 x^{4}-2 x^{3}-3 x+7\right) \mathrm{d} x$

Solution. Due to the linearity of an integral, we can write:

$$
\begin{aligned}
& I=\int\left(5 x^{4}-2 x^{3}-3 x+7\right) \mathrm{d} x= \\
& =5 \int x^{4} \mathrm{~d} x-2 \int x^{3} \mathrm{~d} x-3 \int x \mathrm{~d} x+7 \int 1 \mathrm{~d} x= \\
& =5\left(\frac{x^{5}}{5}+c_{1}\right)-2\left(\frac{x^{4}}{4}+c_{2}\right)-3\left(\frac{x^{2}}{2}+c_{4}\right)+7\left(x+c_{5}\right)= \\
& \quad=x^{5}-\frac{1}{2} x^{4}-\frac{3}{2} x^{2}+7 x+c, \quad x \in \mathbb{R}
\end{aligned}
$$

(b) $\quad I=\int \frac{2 x^{3}-3 \sqrt{x}+5}{x} \mathrm{~d} x$

Solution. We can divide the numerator by the denominator and then use the basic formulas:

$$
\begin{aligned}
& I=\int \frac{2 x^{3}-3 \sqrt{x}+5}{x} \mathrm{~d} x=\int\left(2 x^{2}-3 x^{-\frac{1}{2}}+5 x^{-1}\right) \mathrm{d} x= \\
& \quad=2 \int x^{2} \mathrm{~d} x-3 \int x^{-\frac{1}{2}} \mathrm{~d} x+5 \int x^{-1} \mathrm{~d} x= \\
& =2\left(\frac{x^{3}}{3}+c_{1}\right)-3\left(\frac{x^{\frac{1}{2}}}{\frac{1}{2}}+c_{2}\right)+5\left(\ln |x|+c_{3}\right)= \\
& \quad=\frac{2}{3} x^{3}-6 \sqrt{x}+\ln |x|+c, \quad x \in(0,+\infty) .
\end{aligned}
$$

(c) $\quad I=\int \mathrm{e}^{4 x} \mathrm{~d} x$

Solution. Notice that $\left(\mathrm{e}^{4 x}\right)^{\prime}=4 \mathrm{e}^{4 x}$. To obtain the given function after the differentiation of the result, it must be

$$
I=\int \mathrm{e}^{4 x} \mathrm{~d} x=\frac{\mathrm{e}^{4 x}}{4}+c, \quad x \in \mathbb{R}
$$

(d) $\quad I=\int \cos (3 x-2) \mathrm{d} x$

Solution. Since $(\cos (3 x-2))^{\prime}=3 \sin (3 x-2)$, it is:

$$
I=\int \cos (3 x-2) \mathrm{d} x=\frac{\sin (3 x-2)}{3}+c, \quad x \in \mathbb{R}
$$

1.3 Integration per partes (by parts)

Theorem (Itegration per partes). Let functions u, v have continuous derivatives on an interval $(\boldsymbol{a}, \boldsymbol{b})$. Then

$$
\begin{equation*}
\int u^{\prime}(x) v(x) \mathrm{d} x=u(x) v(x)-\int u(x) v^{\prime}(x) \mathrm{d} x . \tag{1.1}
\end{equation*}
$$

Proof. The formula for the derivative of a forduct implies:

$$
(u v)^{\prime}=u^{\prime} v+u v^{\prime} \quad \text { on } \quad(a, b)
$$

thus

$$
\begin{aligned}
\int(\boldsymbol{u} \boldsymbol{v})^{\prime} & =\int\left(\boldsymbol{u}^{\prime} \boldsymbol{v}+\boldsymbol{u} \boldsymbol{v}^{\prime}\right) \\
\boldsymbol{u} \boldsymbol{v}+\boldsymbol{c} & =\int \boldsymbol{u}^{\prime} \boldsymbol{v}+\int \boldsymbol{u} \boldsymbol{v}^{\prime} \\
\int \boldsymbol{u}^{\prime} \boldsymbol{v} & =\boldsymbol{u} \boldsymbol{v}-\int \boldsymbol{u} \boldsymbol{v}^{\prime}+\boldsymbol{c}
\end{aligned}
$$

The last equality is equivalent with the stated formula.

Application I - simplification of the given function

- Example 1.3.

Find the integral $\int \boldsymbol{x} \boldsymbol{\operatorname { c o s }} \boldsymbol{x} \mathrm{d} \boldsymbol{x}$.
Solution. To simplify the function that should be integrated, let us choose \boldsymbol{x} for the differentiation:

$$
\begin{aligned}
& \int x \cos x \mathrm{~d} x=\left|\begin{array}{ll}
u^{\prime}=\cos x, & u=\sin x \\
v=x, & v^{\prime}=1
\end{array}\right|= \\
& \quad=x \sin x-\int \sin x \mathrm{~d} x=x \sin x+\cos x+c, \quad x \in \mathbb{R}
\end{aligned}
$$

- Example 1.4.

Find the integral $\int x^{2} \sin x \mathrm{~d} x$.
Solution. Bt a repeated differentiation of x^{2} we simplify the integrand to a single goniometric function:

$$
\begin{aligned}
& \int x^{2} \sin x \mathrm{~d} x=\left|\begin{array}{ll}
u^{\prime}=\sin x, & u=-\cos x \\
v=x^{2}, & v^{\prime}=2 x
\end{array}\right|= \\
&= x^{2}(-\cos x)-\int 2 x(-\cos x) \mathrm{d} x=-x^{2} \cos x+2 \int x \cos x \mathrm{~d} x= \\
&=\left|\begin{array}{ll}
u^{\prime}=\cos x, & u=\sin x \\
v=x, & v^{\prime}=1
\end{array}\right|=-x^{2} \cos x+2\left(x \sin x-\int \sin x \mathrm{~d} x\right) \\
& \quad=-x^{2} \cos x+2 x \sin x+2 \cos x+c, \quad x \in \mathbb{R}
\end{aligned}
$$

- Example 1.5.

Find the integral $\int\left(x^{2}+2 x-5\right) \mathrm{e}^{3 x} \mathrm{~d} x$.
Solution.

$$
\begin{aligned}
& \quad \int\left(x^{2}+2 x-5\right) \mathrm{e}^{3 x} \mathrm{~d} x=\left|\begin{array}{ll}
u^{\prime}=\mathrm{e}^{3 x}, & u=\frac{1}{3} \mathrm{e}^{3 x} \\
v=x^{2}+2 x-5, & v^{\prime}=2 x+2
\end{array}\right|= \\
& =\frac{1}{3}\left(x^{2}+2 x-5\right) \mathrm{e}^{3 x}-\frac{1}{3} \int(2 x+2) \mathrm{e}^{3 x} \mathrm{~d} x= \\
& =\left|\begin{array}{ll}
u^{\prime}=\mathrm{e}^{3 x}, & u=\frac{1}{3} \mathrm{e}^{3 x} \\
v=2 x+2, & v^{\prime}=2
\end{array}\right|= \\
& =\frac{1}{3}\left(x^{2}+2 x-5\right) \mathrm{e}^{3 x}-\frac{1}{3}\left(\frac{1}{3}(2 x+2) \mathrm{e}^{3 x}-\frac{2}{3} \int \mathrm{e}^{3 x} \mathrm{~d} x\right)= \\
& =\frac{1}{3}\left(x^{2}+2 x-5\right) \mathrm{e}^{3 x}-\frac{1}{3}\left(\frac{1}{3}(2 x+2) \mathrm{e}^{3 x}-\frac{2}{9} \mathrm{e}^{3 x}\right)+c= \\
& =\left(\frac{1}{3} x^{2}+\frac{4}{9} x-\frac{49}{27}\right) \mathrm{e}^{3 x}+c, \quad x \in \mathbb{R}
\end{aligned}
$$

- Example 1.6.

Find the integral $\int x^{3} \mathrm{e}^{5 x} \mathrm{~d} x$.
Solution.

$$
\begin{aligned}
& \quad \int x^{3} \mathrm{e}^{5 x} \mathrm{~d} x=\left|\begin{array}{cc}
u^{\prime}=\mathrm{e}^{5 x}, & u=\frac{1}{5} \mathrm{e}^{5 x} \\
v=x^{3}, & v^{\prime}=3 x^{2}
\end{array}\right|= \\
& =\frac{1}{5} x^{3} \mathrm{e}^{5 x}-\frac{3}{5} \int x^{2} \mathrm{e}^{5 x} \mathrm{~d} x=\left|\begin{array}{cc}
u^{\prime}=\mathrm{e}^{5 x}, & u=\frac{1}{5} \mathrm{e}^{5 x} \\
v=x^{2}, & v^{\prime}=2 x
\end{array}\right|= \\
& =\frac{1}{5} x^{3} \mathrm{e}^{5 x}-\frac{3}{5}\left(\frac{1}{5} x^{2} \mathrm{e}^{5 x}-\frac{2}{5} \int x \mathrm{e}^{5 x} \mathrm{~d} x\right)=\left|\begin{array}{cc}
u^{\prime}=\mathrm{e}^{5 x}, & u=\frac{1}{5} \mathrm{e}^{5 x} \\
v=x, & v^{\prime}=1
\end{array}\right|= \\
& =\frac{1}{5} x^{3} \mathrm{e}^{5 x}-\frac{3}{25} x^{2} \mathrm{e}^{5 x}+\frac{6}{25}\left(\frac{1}{5} x \mathrm{e}^{5 x}-\frac{1}{5} \int \mathrm{e}^{5 x} \mathrm{~d} x\right)= \\
& \quad=\frac{1}{5} x^{3} \mathrm{e}^{5 x}-\frac{3}{25} x^{2} \mathrm{e}^{5 x}+\frac{6}{125} x \mathrm{e}^{5 x}-\frac{6}{625} \mathrm{e}^{5 x}+c, \quad x \in \mathbb{R} .
\end{aligned}
$$

Remark. In the previous examples, we have calculated:

$$
\begin{gathered}
\int\left(x^{2}+2 x-5\right) \mathrm{e}^{3 x} \mathrm{~d} x=\left(\frac{1}{3} x^{2}+\frac{4}{9} x-\frac{49}{27}\right) \mathrm{e}^{3 x}+c \\
\int x^{3} \mathrm{e}^{5 x} \mathrm{~d} x=\left(\frac{1}{5} x^{3}-\frac{3}{25} x^{2}+\frac{6}{125} x-\frac{6}{625}\right) \mathrm{e}^{5 x}+c
\end{gathered}
$$

In general:

$$
\int P(x) \mathrm{e}^{k x} \mathrm{~d} x=Q(x) e^{k x}
$$

Similar exercises can therefore be solved without a repeated integration by parts simply by finding a polynomial $Q(x)$ such that

$$
\left(Q(x) e^{k x}\right)^{\prime}=P(x) \mathrm{e}^{k x}
$$

- Example 1.7.

Using the estimation method, find the integral $\int\left(x^{2}+2 x-5\right) \mathrm{e}^{3 x} \mathrm{~d} x$
Solution.

$$
\int\left(x^{2}+2 x-5\right) \mathrm{e}^{3 x} \mathrm{~d} x=\left(A x^{2}+B x+C\right) \mathrm{e}^{3 x} .
$$

It is sufficient to find constants A, B, C such that

$$
\left(\left(A x^{2}+B x+C\right) \mathrm{e}^{3 x}\right)^{\prime}=\left(x^{2}+2 x-5\right) \mathrm{e}^{3 x}
$$

thus
$(2 A x+B) \mathrm{e}^{3 x}+\left(A x^{2}+B x+C\right) \cdot 3 \mathrm{e}^{3 x}=\left(x^{2}+2 x-5\right) \mathrm{e}^{3 x}$

$$
\begin{aligned}
\left(3 A x^{2}+(2 A+3 B) x+(B+3 C)\right) \mathrm{e}^{3 x} & =\left(x^{2}+2 x-5\right) \mathrm{e}^{3 x} \\
3 A x^{2}+(2 A+3 B) x+(B+3 C) & =x^{2}+2 x-5
\end{aligned}
$$

$$
3 A x^{2}+(2 A+3 B) x+(B+3 C)=x^{2}+2 x-5
$$

To obtain equal functions on both sides, the coefficients by the same powers of \boldsymbol{x} must be equal:

$$
\begin{array}{llrl}
x^{2} & \ldots & 3 A & =1 \\
x^{1} & \ldots & 2 A+3 B & =2 \\
x^{0} & \ldots & B+3 C & =-5
\end{array}
$$

The solution of this system of linear equations is

$$
A=\frac{1}{3}, \quad B=\frac{4}{9}, \quad C=-\frac{49}{27}
$$

thus

$$
\int\left(x^{2}+2 x-5\right) \mathrm{e}^{3 x} \mathrm{~d} x=\left(\frac{1}{3} x^{2}+\frac{4}{9} x-\frac{49}{27}\right) \mathrm{e}^{3 x}+c .
$$

- Example 1.8.

Find the integral $\int x^{5} \ln x \mathrm{~d} x$.
Solution. Notice that the given function will be simplified by the differentiation of $\ln x$:

$$
\begin{aligned}
& \int x^{5} \ln x \mathrm{~d} x=\left|\begin{array}{ll}
u^{\prime}=x^{5}, & u=\frac{x^{6}}{6} \\
v=\ln x, & v^{\prime}=\frac{1}{x}
\end{array}\right|=\frac{1}{6} x^{6} \ln x-\frac{1}{6} \int \frac{x^{6}}{x} \mathrm{~d} x= \\
& =\frac{1}{6} x^{6} \ln x-\frac{1}{6} \int x^{5} \mathrm{~d} x=\frac{1}{6} x^{6} \ln x-\frac{1}{36} x^{6}+c, \quad x \in \mathbb{R} .
\end{aligned}
$$

- Example 1.9.

Find the integral $\int \ln x \mathrm{~d} x$.
Solution. The given function does not look like a product. Nevertheless, we can again use the integration by parts. It would we helpful to replace $\ln x$ by its derivative $1 / x$. To achieve this, it is sufficient to consider the integrand as a product $1 \ln x$:
$\int 1 \ln x \mathrm{~d} x=\left|\begin{array}{ll}u^{\prime}=1, & u=x \\ v=\ln x, & v^{\prime}=\frac{1}{x}\end{array}\right|=$
$=x \ln x-\int \frac{x}{x} \mathrm{~d} x=x \ln x-\int 1 \mathrm{~d} x=x \ln x-x+c, \quad x \in \mathbb{R}$.

Indirect determination of an indefinite integral: per partes leading to the solution of an equation

In some cases we can avoid a direct integration by the repeated use of per partes method and solving a simple equation for the integral (typical cases cover $\mathrm{e}^{x}, \sin x, \cos x$.:

$$
I=h(x)+k I .
$$

- Example 1.10.

Find the integral $\int \mathrm{e}^{x} \cos x \mathrm{~d} x$.

Solution.

$$
\begin{aligned}
& \int \mathrm{e}^{x} \cos x \mathrm{~d} x=\left|\begin{array}{ll}
u^{\prime}=\mathrm{e}^{x}, & \boldsymbol{u}=\mathrm{e}^{x} \\
v=\cos x, & v^{\prime}=-\sin x
\end{array}\right|= \\
& =\mathrm{e}^{x} \cos x+\int \mathrm{e}^{x} \sin x \mathrm{~d} x=\left|\begin{array}{ll}
u^{\prime}=\mathrm{e}^{x}, & u=\mathrm{e}^{x} \\
v=\sin x, & \boldsymbol{v}^{\prime}=\cos x
\end{array}\right|= \\
& =\mathrm{e}^{x} \cos x+\left(\mathrm{e}^{x} \sin x-\int \mathrm{e}^{x} \cos x \mathrm{~d} x\right)
\end{aligned}
$$

Thus we have obtained an equation

$$
\begin{aligned}
\int \mathrm{e}^{x} \cos x \mathrm{~d} x & =\mathrm{e}^{x} \cos x+\mathrm{e}^{x} \sin x-\int \mathrm{e}^{x} \cos x \mathrm{~d} x \\
2 \int \mathrm{e}^{x} \cos x \mathrm{~d} x & =\mathrm{e}^{x} \cos x+\mathrm{e}^{x} \sin x \\
\int \mathrm{e}^{x} \cos x \mathrm{~d} x & =\frac{1}{2}\left(\mathrm{e}^{x} \cos x+\mathrm{e}^{x} \sin x\right)
\end{aligned}
$$

Remark. Integrals of the type $\int \mathrm{e}^{k x}(P(x) \cos \omega x+Q(x) \sin \omega x) \mathrm{d} x$ where $P(x)$ are $Q(x)$ polynomials of degree n_{1} and n_{2}, respectively, and k and ω are not both equal to zero, are always equal to

$$
\begin{aligned}
& \int \mathrm{e}^{k x}(P(x) \cos \omega x+Q(x) \sin \omega x) \mathrm{d} x= \\
& \mathrm{e}^{k x}(R(x) \cos \omega x+S(x) \sin \omega x),
\end{aligned}
$$

where $R(x)$ and $S(x)$ are polynomials of degree $n=\max \left(n_{1} ; n_{2}\right)$ with unknown coefficients that can be found with the use of a derivative - see p. 19.

- Example 1.11.

Find the integral $\int \mathrm{e}^{-x}(3 \cos 2 x-(4 x+1) \sin 2 x) \mathrm{d} x$.

Solution.

We are looking for the solution in the form

$$
\mathrm{e}^{-x}((A x+B) \cos 2 x+(C x+D) \sin 2 x) .
$$

Using a derivative and comparing the coefficients by particular powers of x we obtain

$$
\begin{aligned}
& \int \mathrm{e}^{-x}(3 \cos 2 x-(4 x+1) \sin 2 x) \mathrm{d} x= \\
& =\mathrm{e}^{-x}\left(\left(\frac{8}{5} x+\frac{11}{25}\right) \cos 2 x+\left(\frac{4}{5} x+\frac{23}{25}\right) \sin 2 x\right)
\end{aligned}
$$

Remark.

Integrals of the type
$\int \sin a x \cos b x d x, \quad \int \sin a x \sin b x d x$,
$\int \cos a x \cos b x \mathrm{~d} x, \quad a \neq b$,
can be solved using a multiple use of the per partes method, or we can simplify the function using the formulas

$$
\begin{aligned}
& \sin \alpha \cos \beta=(\sin (\alpha+\beta)+\sin (\alpha-\beta)) / 2 \\
& \sin \alpha \sin \beta=(\cos (\alpha-\beta)-\cos (\alpha+\beta)) / 2 \\
& \cos \alpha \cos \beta=(\cos (\alpha+\beta)+\cos (\alpha-\beta)) / 2
\end{aligned}
$$

- Example

$$
\begin{gathered}
\int \sin 5 x \cos x \mathrm{~d} x=(1 / 2) \int(\sin 6 x+\sin 4 x) \mathrm{d} x= \\
=-(1 / 12) \cos 6 x-(1 / 8) \cos 4 x+c
\end{gathered}
$$

1.4 Substitution in the indefinite integral

Theorem (The first theorem on the substitution) Let the integral on the left side of the equation

$$
\begin{equation*}
\int f(x) \mathrm{d} x=\int f(\varphi(t)) \varphi^{\prime}(t) \mathrm{d} t \tag{1.2}
\end{equation*}
$$

exists on an interval \boldsymbol{J} and is equal to $\boldsymbol{F}(\boldsymbol{x})$. Let $\boldsymbol{x}=\varphi(\boldsymbol{t})$ have a continuous derivative on an interval $\varphi(I) \subset J$. Then the integral on the right side of the equation (1.2) exists on I and is equal to $\boldsymbol{F}(\varphi(t))$.
Proof. Let \boldsymbol{F} be a primitive function to a function f on an interval \boldsymbol{J}. Since φ maps the interval I to the interval \boldsymbol{J}, the composite functions $F(\varphi(t))$ and $f(\varphi(t))$ are defined on I and the rule for the derivative of a composite function implies

$$
\frac{\mathrm{d}}{\mathrm{~d} t} F(\varphi(t))=F^{\prime}(\varphi(t)) \varphi^{\prime}(t)=f(\varphi(t)) \varphi^{\prime}(t), \quad t \in I
$$

Remark. The previous theorem is useful in the cases where the integral is "prepared"in the form

$$
\int f(\varphi(t)) \varphi^{\prime}(t) \mathrm{d} t
$$

- Example 1.12.

Find the integral $\int \mathrm{e}^{5 t+3} \mathrm{~d} t$.
Solution. The integrand is continuous in \mathbb{R}, the integral therefore existuje. Denote

$$
x=\varphi(t)=5 t+3, \quad \mathrm{~d} x=\varphi^{\prime}(t) \mathrm{d} t=5 \mathrm{~d} t .
$$

All assumptions of the theorem on the substitution are satisfied and we can write:

$$
\begin{aligned}
& \int \mathrm{e}^{5 t+3} \mathrm{~d} t=\frac{1}{5} \int \mathrm{e}^{5 t+3} 5 \mathrm{~d} t=\frac{1}{5} \int \mathrm{e}^{x} \mathrm{~d} x=\frac{1}{5} \mathrm{e}^{x}+c= \\
& \\
& =\frac{1}{5} \mathrm{e}^{5 t+3}+c, \quad t \in \mathbb{R} .
\end{aligned}
$$

- Example 1.13.

Find the integral $\int \frac{\mathrm{e}^{t}}{\left(\mathrm{e}^{t}+2\right)^{3}} \mathrm{~d} t$.
Solution. The given function is continuous in \mathbb{R}, the integral therefore exists in \mathbb{R},. Similarly as in the previous example,

$$
\begin{gathered}
\int \frac{\mathrm{e}^{t}}{\left(\mathrm{e}^{t}+2\right)^{3}} \mathrm{~d} t=\left|\begin{array}{c}
x=\mathrm{e}^{t}+2 \\
\mathrm{~d} x=\mathrm{e}^{t} \mathrm{~d} t
\end{array}\right|=\int \frac{1}{x^{3}} \mathrm{~d} x=\int x^{-3} \mathrm{~d} x= \\
\quad=\frac{x^{-2}}{-2}+c=-\frac{1}{2 x^{2}}+c=-\frac{1}{2\left(\mathrm{e}^{t}+2\right)^{2}}+c, \quad t \in \mathbb{R} .
\end{gathered}
$$

Remark. Of course, it does not matter which letters are used for the variables.

- Example 1.14.

Find the integral $\int \frac{(\ln x)}{x \cdot \sqrt{\left(5+\ln ^{2} x\right)^{3}}} \mathrm{~d} x$ on $I=(0,+\infty)$.
Solution.

$$
\begin{gathered}
\int \frac{(\ln x)}{x \cdot \sqrt{\left(5+\ln ^{2} x\right)^{3}}} \mathrm{~d} x=\int \frac{1}{\sqrt{\left(5+\ln ^{2} x\right)^{3}}}(\ln x) \frac{1}{x} \mathrm{~d} x= \\
=\frac{1}{2} \int \frac{1}{\sqrt{\left(5+\ln ^{2} x\right)^{3}}}(2 \ln x) \frac{1}{x} \mathrm{~d} x=\left|\begin{array}{l}
t=5+\ln ^{2} x \\
\mathrm{~d} t=(2 \ln x) \frac{1}{x} \mathrm{~d} x
\end{array}\right|= \\
=\frac{1}{2} \int \frac{1}{\sqrt{t^{3}}} \mathrm{~d} t=\frac{1}{2} \int t^{-\frac{3}{2}} \mathrm{~d} t=\frac{t^{-\frac{1}{2}}}{-\frac{1}{2}}+c=-2 \sqrt{t}+c= \\
=-2 \sqrt{5+\ln ^{2} x}+c, \quad x \in(0,+\infty) .
\end{gathered}
$$

Theorem (The second theorem on the substitution) Let the integral on the left side of the equation

$$
\begin{equation*}
\int f(\varphi(t)) \varphi^{\prime}(t) \mathrm{d} t=\int f(x) \mathrm{d} x \tag{1.3}
\end{equation*}
$$

exist on an interval I and is equal to $F(t)$, let a function $x=\varphi(t)$ be such that it has a non-zero derivative at each point of I a maps I to $J=\varphi(I)$. Then the integral on the right side of the equation (1.3) exists on J and is equal to $\boldsymbol{F}(\psi(x))$, where $\psi(x)$ is an inverse function to the function $x=\varphi(t)$.
Proof. The function φ is invertible on I. Denote its inverse function by $t=\psi(x)$. This function maps an interval J on an interval I. According to the assumption, there exists a function G such that $G^{\prime}(t)=f(\varphi(t)) \varphi^{\prime}(t), t \in I$. Denote

$$
F(x)=G(\psi(x)) .
$$

The rule for the derivative of a composite function implies that $F^{\prime}(x)=G^{\prime}(\psi(x)) \psi^{\prime}(x)=G^{\prime}(t) \psi^{\prime}(x)=f(\varphi(t)) \varphi^{\prime}(t) \cdot 1 / \varphi^{\prime}(t)=$ $f(x), x \in J$.

Remark. Instead of $\varphi^{\prime}(t) \neq 0$ for all $t \in I$ it is sufficient to require that φ is strictly monotonous and $\varphi^{\prime}(t)=0$ for at most a finite number of values of $t \in I$.

- Example 1.15.

Find the integral $\int \frac{5}{\sqrt{1-x^{2}}} \mathrm{~d} x, x \in(-1,1)$.
Solution. The integrand is continuous on the interval $J=(-1,1)$, the integral therefore exists takže integrál on J. To remove the square root, we can use the identity $\cos ^{2} t=1-\sin ^{2} t$ and the substitution:

$$
\begin{aligned}
& x=\varphi(t)=\sin t ; \quad \varphi(t) \text { maps }(-\pi / 2, \pi / 2) \text { on }(-1,1) ; \\
& \mathrm{d} x=\cos t \mathrm{~d} t ; \quad \varphi^{\prime}(t)=(\sin t)^{\prime}=\cos t \neq 0 ; \\
& \sqrt{1-x^{2}}=|\cos t|=\cos t>0 ; \\
& t=\arcsin x \\
& \int \frac{5}{\sqrt{1-x^{2}}} \mathrm{~d} x=\int \frac{5}{\cos t} \cos t \mathrm{~d} t=5 \int 1 \mathrm{~d} t=5 t+c= \\
& =5 \arcsin x+t, \quad x \in(-1,1) .
\end{aligned}
$$

