
LECTURE 1

INDEFINITE
INTEGRAL



1.1 Primitive function

Definition 1. Let f be a function defined on an open (boun-
ded or unbounded) interval (a, b) . Any function F such that

F ′(x) = f(x) for all x ∈ (a, b) ,

is called a primitive function to the function f on the
interval (a, b) .

* Example 1.1.

(a) F (x) = 1
4
x4 is a primitive function to f(x) = x3 on the

interval (−∞,+∞) .

(b) F (x) = −x−1 is a primitive function to f(x) = x−2 on
the interval (−∞, 0) and on the interval (0,+∞) , but
not e.g. on (−1, 5) that contains 0 6∈ Df .
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Remark. If F is a primitive function to f on the interval (a, b),
then also any function of the form G(x) = F (x) + c , where
c ∈ R is any constant, is a primitive function to f on (a, b). The
following theorem states that in this way, all primitive functions
are exhausted:

Theorem. If F,G are any two primitive functions to a function
f on an interval (a, b), then there exists a constant c ∈ R such
that

G(x) = F (x) + c

for all x ∈ (a, b).

Proof. Consider a function H(x) = G(x) − F (x). Functions
F,G are primitive functions to f, thus

H ′(x) = (G(x)− F (x))′ = G′(x)−F ′(x) = f(x)−f(x) = 0.

According to the Cauchy Mean Theorem, H(x) is constant on
(a, b), i.e., H(x) = c .
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Definition 2. The set of all primitive functions (if it is
non-empty) to a function f on an interval (a, b) is called
an indefinite integral of the function f on the inter-
val (a, b) and it is denoted by the symbol

∫
f or

∫
f(x) dx .

Remark. If F is a primitive function to a function f on (a, b), we
write ∫

f(x) dx = F (x) + c .

The constant c is called a constant of integration.
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Theorem (Additivity of an integral with respect to the domain of
integration).

1. If a function f has an integral on an interval (a, b) and I is an
open subinterval of (a, b), then f has an integral on I, too.

2. If a function f has an integral on intervals I1, I2, · · · , Im and if
their union I = I1∪I2∪· · ·∪Im is an interval, then the function
f has an integral on I .

Theorem (Indefinite integral of a continuous function).
If a function f(x) is continuous on an interval 〈a, b〉, then there exists
its primitive function on (a, b).

Theorem (Indefinite integral of a derivative).
If f ′(x) is continuous on an interval (a, b), it is∫

f ′(x) dx = f(x) + c.
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Theorem (Linearity of an integral)

1. Let F , G be primitive functions on an interval (a, b) to f ,
g, let r be a number. Then F +G is a primitive function to
f + g and rF is a primitive function to rf on (a, b).

2. Let f, g have indefinite integrals on an interval (a, b), let r
be a number. Then f + g and rf have indefinite integrals
on (a, b), too, and the following equalities are satisfied:∫

(f(x) + g(x)) dx =
∫
f(x) dx+

∫
g(x) dx ,∫

rf(x) dx = r
∫
f(x) dx .

3. Let functions f1, f2, · · · , fm have indefinite integrals on (a, b),

let r1, r2, · · · , rm be any constants. Then the function r1f1+
r2f2 + · · · + rmfm has an indefinite integral, too, and the
following equality is satisfied:∫

(r1f1(x)+r2f2(x)+· · ·+rnfn(x)) dx =

= r1
∫
f1(x) dx+r2

∫
f2(x) dx+· · ·+rn

∫
fn(x) dx.
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1.2 Fundamental integration formulas

The well-known formulas from the differential calculus imply:

1)

∫
xn dx =

xn+1

n+ 1
+ c, x ∈ R for n ∈ Z, n > 0;

x ∈ R \ {0}, n ∈ Z, n < −1,
x > 0 for n ∈ R, n /∈ Z.

2)

∫
dx

x
= ln |x|+ c, x ∈ R \ {0} .

3)

∫
ex dx = ex + c; x ∈ R.

4)

∫
ax dx =

ax

ln a
+ c, x ∈ R, a > 0, a 6= 1.

5)

∫
sinx dx = − cosx+ c, x ∈ R.

6)

∫
cosx dx = sinx+ c, x ∈ R.
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7)

∫
1

cos2 x
dx = tanx+ c,

x ∈ ((2k − 1)
π

2
, (2k + 1)

π

2
), k ∈ Z.

8)

∫
1

sin2 x
dx = −cotx+ c,

x ∈ (2kπ, (2k + 1)π), k ∈ Z.

9)

∫
1

√
1− x2

dx =

{
arcsinx+ c,

− arccosx+ c,
x ∈ (−1, 1).

10)

∫
1

1 + x2
dx =

{
arctanx+ c,

−arccot x+ c,
x ∈ R.

11)

∫
coshx dx = sinhx+ c; x ∈ R.

12)

∫
sinhx dx = coshx+ c; x ∈ R.
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13)

∫
1

cosh 2x
dx = tanhx+ c,

14)

∫
1

sinh 2x
dx = cothx+ c,

15)

∫
1

√
x2 + 1

dx = argsinhx+ c = ln
(
x+

√
x2 + 1

)
+ c

16)

∫
1

√
x2 − 1

dx = argcoshx+ c = ln
(
x+

√
x2 − 1

)
+ c

17)

∫
1

1− x2
dx =

1

2
ln

∣∣∣∣1 + x

1− x

∣∣∣∣ ,
ln

√
1 + x

1− x
= argtanhx, ln

√
x+ 1

x− 1
= argcothx
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* Example 1.2.

Find the following integrals:

(a) I =
∫
(5x4 − 2x3 − 3x+ 7) dx

Solution. Due to the linearity of an integral, we can write:

I =
∫
(5x4 − 2x3 − 3x+ 7) dx =

= 5
∫
x4 dx− 2

∫
x3 dx− 3

∫
x dx+ 7

∫
1 dx =

= 5

(
x5

5
+ c1

)
− 2

(
x4

4
+ c2

)
− 3

(
x2

2
+ c4

)
+ 7(x+ c5) =

= x5 −
1

2
x4 −

3

2
x2 + 7x+ c , x ∈ R .
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(b) I =

∫
2x3 − 3

√
x+ 5

x
dx

Solution. We can divide the numerator by the denomi-
nator and then use the basic formulas:

I =

∫
2x3 − 3

√
x+ 5

x
dx =

∫
(2x2−3x−1

2+5x−1) dx =

= 2
∫
x2 dx− 3

∫
x−

1
2 dx+ 5

∫
x−1 dx =

= 2

(
x3

3
+ c1

)
− 3

(
x

1
2

1
2

+ c2

)
+ 5 (ln |x|+ c3) =

=
2

3
x3 − 6

√
x+ ln |x|+ c , x ∈ (0,+∞) .
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(c) I =
∫
e4x dx

Solution. Notice that (e4x)′ = 4e4x. To obtain the given
function after the differentiation of the result, it must be

I =
∫
e4x dx =

e4x

4
+ c , x ∈ R .

(d) I =
∫
cos (3x− 2) dx

Solution. Since (cos (3x− 2))′ = 3 sin (3x− 2), it is:

I =
∫
cos (3x− 2) dx =

sin (3x− 2)

3
+ c , x ∈ R .
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1.3 Integration per partes (by parts)

Theorem (Itegration per partes). Let functions u, v have con-
tinuous derivatives on an interval (a, b). Then∫

u′(x)v(x) dx = u(x)v(x)−
∫
u(x)v′(x) dx . (1.1)

Proof. The formula for the derivative of a forduct implies:

(uv)′ = u′v + uv′ on (a, b),

thus ∫
(uv)′ =

∫
(u′v + uv′)

uv + c =
∫
u′v +

∫
uv′∫

u′v = uv −
∫
uv′ + c

The last equality is equivalent with the stated formula.

13



Application I – simplification of the given function

* Example 1.3.

Find the integral
∫
x cosx dx .

Solution. To simplify the function that should be integrated, let
us choose x for the differentiation:

∫
x cosx dx =

∣∣∣∣∣ u
′ = cosx , u = sinx

v = x , v′ = 1

∣∣∣∣∣ =
= x sinx−

∫
sinx dx = x sinx+ cosx+ c , x ∈ R .
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* Example 1.4.

Find the integral
∫
x2 sinx dx .

Solution. Bt a repeated differentiation of x2 we simplify the inte-
grand to a single goniometric function:

∫
x2 sinx dx =

∣∣∣∣∣ u
′ = sinx , u = − cosx

v = x2 , v′ = 2x

∣∣∣∣∣ =
= x2(− cosx)−

∫
2x(− cosx) dx = −x2 cosx+2

∫
x cosx dx =

=

∣∣∣∣∣ u
′ = cosx , u = sinx

v = x , v′ = 1

∣∣∣∣∣ = −x2 cosx+2
(
x sinx−

∫
sinx dx

)
=

= −x2 cosx+ 2x sinx+ 2 cosx+ c , x ∈ R .
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* Example 1.5.

Find the integral
∫
(x2 + 2x− 5) e3x dx .

Solution.

∫
(x2 + 2x− 5) e3x dx =

∣∣∣∣∣ u
′ = e3x , u = 1

3
e3x

v = x2 + 2x− 5 , v′ = 2x+ 2

∣∣∣∣∣ =
= 1

3

(
x2 + 2x− 5

)
e3x − 1

3

∫
(2x+ 2)e3x dx =

=

∣∣∣∣∣ u
′ = e3x , u = 1

3
e3x

v = 2x+ 2 , v′ = 2

∣∣∣∣∣ =
= 1

3

(
x2 + 2x− 5

)
e3x − 1

3

(
1
3
(2x+ 2)e3x − 2

3

∫
e3x dx

)
=

= 1
3

(
x2 + 2x− 5

)
e3x − 1

3

(
1
3
(2x+ 2)e3x − 2

9
e3x
)
+ c =

=
(
1
3
x2 + 4

9
x− 49

27

)
e3x + c , x ∈ R .
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* Example 1.6.

Find the integral
∫
x3e5x dx .

Solution.

∫
x3e5x dx =

∣∣∣∣∣ u
′ = e5x , u = 1

5
e5x

v = x3 , v′ = 3x2

∣∣∣∣∣ =
= 1

5
x3e5x − 3

5

∫
x2e5x dx =

∣∣∣∣∣ u
′ = e5x , u = 1

5
e5x

v = x2 , v′ = 2x

∣∣∣∣∣ =
= 1

5
x3e5x−3

5

(
1
5
x2e5x − 2

5

∫
xe5x dx

)
=

∣∣∣∣∣ u
′ = e5x , u = 1

5
e5x

v = x , v′ = 1

∣∣∣∣∣ =
= 1

5
x3e5x − 3

25
x2e5x + 6

25

(
1
5
xe5x − 1

5

∫
e5x dx

)
=

= 1
5
x3e5x − 3

25
x2e5x + 6

125
xe5x − 6

625
e5x + c , x ∈ R .
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Remark. In the previous examples, we have calculated:∫
(x2 + 2x− 5) e3x dx =

(
1
3
x2 + 4

9
x− 49

27

)
e3x + c ,

∫
x3e5x dx =

(
1
5
x3 − 3

25
x2 + 6

125
x− 6

625

)
e5x + c .

In general: ∫
P (x)ekx dx = Q(x)ekx .

Similar exercises can therefore be solved without a repeated in-
tegration by parts simply by finding a polynomial Q(x) such that(

Q(x)ekx
)′

= P (x)ekx.
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* Example 1.7.

Using the estimation method, find the integral
∫
(x2 + 2x− 5) e3x dx .

Solution.∫
(x2 + 2x− 5) e3x dx = (Ax2 +Bx+ C) e3x .

It is sufficient to find constants A, B, C such that((
Ax2 +Bx+ C

)
e3x
)′

=
(
x2 + 2x− 5

)
e3x ,

thus

(2Ax+B) e3x +
(
Ax2 +Bx+ C

)
· 3e3x = (x2 + 2x− 5) e3x(

3Ax2 + (2A+ 3B)x+ (B + 3C)
)
e3x = (x2 + 2x− 5) e3x

3Ax2 + (2A+ 3B)x+ (B + 3C) = x2 + 2x− 5
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3Ax2 + (2A+ 3B)x+ (B + 3C) = x2 + 2x− 5

To obtain equal functions on both sides, the coefficients by the
same powers of x must be equal:

x2 . . . 3A = 1

x1 . . . 2A+ 3B = 2

x0 . . . B + 3C = −5

The solution of this system of linear equations is

A = 1
3
, B = 4

9
, C = −49

27
,

thus ∫
(x2 + 2x− 5) e3x dx =

(
1
3
x2 + 4

9
x− 49

27

)
e3x + c .
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* Example 1.8.

Find the integral
∫
x5 lnx dx .

Solution. Notice that the given function will be simplified by the
differentiation of lnx :

∫
x5 lnx dx =

∣∣∣∣∣∣∣∣∣
u′ = x5 , u =

x6

6

v = lnx , v′ =
1

x

∣∣∣∣∣∣∣∣∣ =
1
6
x6 lnx−1

6

∫ x6

x
dx =

= 1
6
x6 lnx− 1

6

∫
x5 dx = 1

6
x6 lnx− 1

36
x6 + c , x ∈ R .

21



* Example 1.9.

Find the integral
∫
lnx dx .

Solution. The given function does not look like a product. Ne-
vertheless, we can again use the integration by parts. It would we
helpful to replace lnx by its derivative 1/x . To achieve this, it is
sufficient to consider the integrand as a product 1 lnx :

∫
1 lnx dx =

∣∣∣∣∣∣
u′ = 1 , u = x

v = lnx , v′ =
1

x

∣∣∣∣∣∣ =
= x lnx−

∫ x
x
dx = x lnx−

∫
1 dx = x lnx−x+c , x ∈ R .
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Indirect determination of an indefinite integral:
per partes leading to the solution of an equation

In some cases we can avoid a direct integration by the repeated
use of per partes method and solving a simple equation for the
integral (typical cases cover ex, sinx, cosx.:

I = h(x) + kI .
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* Example 1.10.

Find the integral
∫
ex cosx dx .

Solution.∫
ex cosx dx =

∣∣∣∣∣ u
′ = ex , u = ex

v = cosx , v′ = − sinx

∣∣∣∣∣ =
= ex cosx+

∫
ex sinx dx =

∣∣∣∣∣ u
′ = ex , u = ex

v = sinx , v′ = cosx

∣∣∣∣∣ =
= ex cosx+

(
ex sinx−

∫
ex cosx dx

)
Thus we have obtained an equation

∫
ex cosx dx = ex cosx+ ex sinx−

∫
ex cosx dx

2
∫
ex cosx dx = ex cosx+ ex sinx∫
ex cosx dx =

1

2
(ex cosx+ ex sinx)
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Remark. Integrals of the type
∫
ekx(P (x) cosωx+Q(x) sinωx) dx

where P (x) are Q(x) polynomials of degree n1 and n2, re-
spectively, and k and ω are not both equal to zero, are always
equal to∫

ekx(P (x) cosωx+Q(x) sinωx) dx =

ekx(R(x) cosωx+ S(x) sinωx),

whereR(x) and S(x) are polynomials of degreen = max(n1;n2)

with unknown coefficients that can be found with the use of a de-
rivative – see p. 19.
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* Example 1.11.

Find the integral
∫
e−x(3 cos 2x− (4x+ 1) sin 2x) dx .

Solution.
We are looking for the solution in the form

e−x ((Ax+B) cos 2x+ (Cx+D) sin 2x) .

Using a derivative and comparing the coefficients by particular
powers of x we obtain

∫
e−x(3 cos 2x− (4x+ 1) sin 2x) dx =

= e−x
((

8
5
x+ 11

25

)
cos 2x+

(
4
5
x+ 23

25

)
sin 2x

)
.
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Remark.
Integrals of the type∫

sin ax cos bx dx,
∫
sin ax sin bx dx ,∫

cos ax cos bx dx, a 6= b,

can be solved using a multiple use of the per partes method, or
we can simplify the function using the formulas

sinα cosβ = (sin(α+ β) + sin(α− β))/2,
sinα sinβ = (cos(α− β)− cos(α+ β))/2,

cosα cosβ = (cos(α+ β) + cos(α− β))/2.

* Example∫
sin 5x cosx dx = (1/2)

∫
(sin 6x+ sin 4x) dx =

= −(1/12) cos 6x− (1/8) cos 4x+ c.
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1.4 Substitution in the indefinite integral

Theorem (The first theorem on the substitution) Let the in-
tegral on the left side of the equation∫

f(x) dx =
∫
f(ϕ(t))ϕ′(t) dt (1.2)

exists on an interval J and is equal to F (x). Let x = ϕ(t) have a
continuous derivative on an interval ϕ(I) ⊂ J . Then the integral
on the right side of the equation (1.2) exists on I and is equal to
F
(
ϕ(t)

)
.

Proof. Let F be a primitive function to a function f on an interval
J . Since ϕ maps the interval I to the interval J , the composite
functions F (ϕ(t)) and f(ϕ(t)) are defined on I and the rule for
the derivative of a composite function implies

d

dt
F (ϕ(t)) = F ′(ϕ(t))ϕ′(t) = f(ϕ(t))ϕ′(t) , t ∈ I.

28



Remark. The previous theorem is useful in the cases where the
integral is "prepared"in the form∫

f(ϕ(t))ϕ′(t) dt .

* Example 1.12.

Find the integral
∫
e5t+3 dt .

Solution. The integrand is continuous in R , the integral therefore
existuje. Denote

x = ϕ(t) = 5t+ 3, dx = ϕ′(t) dt = 5dt .

All assumptions of the theorem on the substitution are satisfied
and we can write:∫

e5t+3 dt = 1
5

∫
e5t+35 dt = 1

5

∫
ex dx = 1

5
ex + c =

= 1
5
e5t+3 + c , t ∈ R .
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* Example 1.13.

Find the integral
∫

et

(et + 2)3
dt .

Solution. The given function is continuous in R , the integral the-
refore exists in R ,. Similarly as in the previous example,

∫
et

(et + 2)3
dt =

∣∣∣∣∣ x = et + 2

dx = et dt

∣∣∣∣∣ =
∫

1

x3
dx =

∫
x−3 dx =

=
x−2

−2
+ c = −

1

2x2
+ c = −

1

2(et + 2)2
+ c , t ∈ R .

Remark. Of course, it does not matter which letters are used for
the variables.
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* Example 1.14.

Find the integral
∫

(lnx)

x ·
√

(5 + ln2 x)3
dx on I = (0,+∞).

Solution.∫
(lnx)

x ·
√

(5 + ln2 x)3
dx =

∫
1√

(5 + ln2 x)3
(lnx)

1

x
dx =

=
1

2

∫
1√

(5 + ln2 x)3
(2 lnx)

1

x
dx =

∣∣∣∣∣∣
t = 5 + ln2 x

dt = (2 lnx)
1

x
dx

∣∣∣∣∣∣ =
=

1

2

∫
1
√
t3

dt =
1

2

∫
t−

3
2 dt =

t−
1
2

−1
2

+ c = −2
√
t+ c =

= −2
√

5 + ln2 x+ c , x ∈ (0,+∞) .
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Theorem (The second theorem on the substitution) Let the
integral on the left side of the equation∫

f(ϕ(t))ϕ′(t) dt =
∫
f(x) dx (1.3)

exist on an interval I and is equal to F (t), let a function x = ϕ(t)

be such that it has a non-zero derivative at each point of I a maps
I to J = ϕ(I). Then the integral on the right side of the equation
(1.3) exists on J and is equal to F

(
ψ(x)

)
, where ψ(x) is an

inverse function to the function x = ϕ(t).

Proof. The functionϕ is invertible on I. Denote its inverse function
by t = ψ(x). This function maps an interval J on an interval I.
According to the assumption, there exists a function G such that
G′(t) = f(ϕ(t))ϕ′(t) , t ∈ I . Denote

F (x) = G(ψ(x)) .

The rule for the derivative of a composite function implies that
F ′(x) = G′(ψ(x))ψ′(x) = G′(t)ψ′(x) = f(ϕ(t))ϕ′(t)·1/ϕ′(t) =

f(x), x ∈ J .
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Remark. Instead of ϕ′(t) 6= 0 for all t ∈ I it is sufficient to
require that ϕ is strictly monotonous and ϕ′(t) = 0 for at most a
finite number of values of t ∈ I.

* Example 1.15.

Find the integral
∫ 5
√
1− x2

dx , x ∈ (−1, 1).

Solution. The integrand is continuous on the interval J = (−1, 1),
the integral therefore exists takže integrál on J. To remove the
square root, we can use the identity cos2 t = 1 − sin2 t and the
substitution:

x = ϕ(t) = sin t ; ϕ(t) maps (−π/2, π/2) on (−1, 1) ;
dx = cos t dt ; ϕ′(t) = (sin t)′ = cos t 6= 0 ;√
1− x2 = | cos t| = cos t > 0 ;

t = arcsinx

∫ 5
√
1− x2

dx =

∫
5

cos t
cos t dt = 5

∫
1 dt = 5t+ c =

= 5 arcsinx+ t, x ∈ (−1, 1) .
33
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