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Riemann Integral

Definition 1. Let I = [a, b] be a bounded interval in R.
A partition D of [a, b] is any finite sequence of points

x0 = x ≤ x1 ≤ x2 ≤ · · · < xn−1 ≤ xn = b .

Definition 2. A partition D′ of an interval [a, b] is a refine-
ment of the partition D if D ⊂ D′.

b = xm 
a = x0 x2x1 xi-1 ...xi+1 xm-1...

b = xn
 

a = x0 x2x1 xi-1 ...xi xn-1...

Partition D:

Partition D' - a refinement of the partition D

xi
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Definition 3. Let f be a function that is bounded on an in-
terval [a, b]. Denote

mi = inf
x∈[xi−1,xi]

f(x) , Mi = sup
x∈[xi−1,xi]

f(x) .

For any partition D of [a, b] , the numbers

sD =
n∑
i=1

mi ·
(
xi−xi−1

)
, SD =

n∑
i=1

Mi ·
(
xi−xi−1

)
.

are called the lower Riemann sum and the SD upper
Riemann sum of f(x) corresponding to the partitionD.

Remark. Since mi ≤Mi for any i, it is

sD ≤ SD.
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Geometric interpretation

The lower sum represents the area of the inscribed region com-
posed by rectangles that are all bellow the graph, but touch it. For
any partition, this area is lower or equal to the area of the region
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circumscribed by the axis x and the graph of the function on the
given interval. Similarly, the upper sum gives the area of the cir-
cumscribed region and is always greater or equal to the area of
the region between the axis x and the graph of the function.

Denote by D the set of all partitions of the interval [a, b] ,

M = sup
x∈[a,b]

f(x) , m = inf
x∈[a,b]

f(x) .
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Theorem. If D′ is a refinement of a partition D, the following
inequalities are satisfied:

m(b− a) ≤ sD ≤ sD′ ≤ SD′ ≤ SD ≤M(b− a) .
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Theorem. For any two partitionsD1 andD2 of the interval [a, b] ,
the following inequality is satisfied: sD1 ≤ SD2.

The set {sD;D ∈ D} is bounded from above, e.g., by the
numberM(b−a) , and bounded from below, e.g., bym(b−a) .

Thus there exist

s = sup
D∈D

sD ∈ R and S = inf
D∈D

SD ∈ R .

Definition 4. The number s = sup
D∈D

sD is called the lower

Riemann integral of the function f on the interval
[a, b] , the number S = inf

D∈D
SD is called the upper

Riemann integral of the function f on the interval
[a, b] .
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Definition 5. Let I = [a, b] be a bounded interval in R, let
f(x) be a function that is bounded on I. If s = S, where s
and S are the lower and upper Riemann integrals of f(x)

on I, this common value is called the Riemann integral
of the function f(x) on the interval I = [a, b] and it is

denoted by the symbol
∫ b

a

f(x) dx. In this case we say

that the function f is integrable on I.

The Riemann integral is also called the definite integral
of f on [a, b].

Remark. Notice that the Riemann integral is defined only for
bounded functions on bounded intervals.
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Theorem. If a function f is monotonous on an interval [a, b] ,

then it is integrable on [a, b] .

Theorem. If a function f is continuous on an interval [a, b] , then
it is integrable on [a, b] .

Theorem. A function f is integrable on an interval [a, b] if and
only if it is integrable on the intervals [a, c] and [c, b] for any c ∈
(a, b). Moreover, it is∫ b

a

f(x) dx =

∫ c

a

f(x) dx+

∫ b

c

f(x) dx .

Remark. The Riemann integral
∫ b

a

f(x) dxwas defined for b ≥ a.

The previous theorem allows to extend the definition to cover the
case b ≤ a, too. We can simply put∫ b

a

f(x) dx = −
∫ a

b

f(x) dx .
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Theorem. Let the functions f1 , f2 be integrable on an interval
[a, b] , let c1, c2 be real constants. Then∫ b

a

(
c1f1(x)+c2f2(x)

)
dx = c1

∫ b

a

f1(x) dx+c2

∫ b

a

f2(x) dx .

Theorem. Let the function f be integrable on an interval [a, b] ,

let k ≤ f(x) ≤ K for all x ∈ [a, b]. Then

k(b− a) ≤
∫ b

a

f(x) dx ≤ K(b− a).

Theorem. If f(x) ≥ 0 is integrable on [a, b], then
∫ b

a

f(x) dx ≥ 0.

Theorem. If f, g are integrable on [a, b] and f(x) ≤ g(x) for all

x ∈ [a, b] , then
∫ b

a

f(x) dx ≤
∫ b

a

g(x) dx .

Theorem. If f is integrable on [a, b], then∣∣∣∣∫ b

a

f(x) dx

∣∣∣∣ ≤ ∫ b

a

∣∣f(x)
∣∣ dx.
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Integral as a function of the upper limit

Let f be a function that is integrable on an interval [a, b]. Then
for any x ∈ [a, b] , there exists the integral

∫ x
a
f(t) dt. Since

the value of this integral is uniquely determined, we can define a
function F : [a, b]→ R to be

F (x) =
x∫
a

f(t) dt , x ∈ [a, b] .

The integral in this equality is therefore the function of the up-
per limit. Analogously we can consider the integral that is the
function of the lower limit, i.e.,

G(x) =
b∫
x

f(t) dt , x ∈ [a, b] .

For x, x+ h ∈ [a, b] it is

F (x+h) =
x+h∫
a

f(t) dt =
x∫
a

f(t) dt+
x+h∫
x

f(t) dt = F (x)+
x+h∫
x

f(t) dt.
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Theorem. Let f be a function that is integrable on [a, b] . Then

the function F (x) =
x∫
a

f(t) dt , x ∈ [a, b] has the following

properties:

(i) it is continuous on [a, b] ;

(ii) if f is continuous at x0 ∈ (a, b), then F ′(x0) = f(x0).
If x0 = a or x0 = b, respectively, then F ′(a+) =

f(a+) or F ′(b−) = f(b−), respectively;
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Newton–Leibniz formula

Theorem. Let the function f be continuous on an interval [a, b] ,

let F be its primitive function. Then∫ b

a

f(x) dx = F (b)− F (a).

Remark. Newton–Leibniz formula is usually denoted in the form

b∫
a

f(x) dx = F (b)− F (a) = [F (x)]ba.

Obviously:

[F (x)±G(x)]ba = [F (x)]ba±[G(x)]ba, [cF (x)]ba = c[F (x)]ba

for any two functions F,G and any real number c.
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Newton–Leibniz formula is very useful since it finaly provides the
way how to find the Riemann integral. Moreover, it allows to use
all integration methods that we have learned for indefinite in-
tegrals. As soon as we find a primitive function F for a given
function f , it is sufficient to use the Newton-Leibniz formula.

Remark. Notice that the result is the same for all primitive function.
If F , G are primitive functions to f on [a, b], then there exists a
real constant C such that G(x) = F (x) + C for all x ∈ [a, b],
thus

G(b)−G(a) = (F (b) + C)− (F (a) + C) = F (b)− F (a) .

Definition 6. Let the function f(x) be defined on an
interval [a, b]. If F (x) is a primitive function to f(x) on
[a, b], the number F (b) − F (a) is called the Newton
definite integral of f(x) on [a, b].
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* Example 3.1.

Consider a function

f(x) =


1

n
for x =

m

n
∈ Q , n ∈ N, m ∈ Z have no common divisor

0 for x ∈ R \ Q .

It can be proved that there exists the Riemann integral∫ 1

0

f(x) dx = 0.

But there does not exist a primitive function on [0, 1]. Thus there
does not exist the Newton integral.
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3.1 Integration by parts (per partes)

Theorem. Let the functions f, g have continuous derivatives on
an interval [a, b]. Then:∫ b

a

f ′(x)g(x) dx = f(b)g(b)− f(a)g(a)−
∫ b

a

f(x)g′(x) dx .

Proof. The functions

F (x) =

∫ x

a

f ′(t)g(t) dt , F̃ (x) = f(x)g(x)−f(a)g(a)−
∫ x

a

f(t)g′(t) dt

are primitive to f ′(x)g(x) on [a, b]. They can therefore differ only
by an additive constant. But for x = a it is F (a) = F̃ (a) = 0.

Thus for any x ∈ [a, b] , the following equality is satisfied:∫ x

a

f ′(t)g(t) dt = f(x)g(x)− f(a)g(a)−
∫ x

a

f(t)g′(t) dt .

For x = b we obtain the proposition. �
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3.2 Substitution in the Riemann integral
Theorem. Let the function f(x) be continuous on an interval
[a, b] , let ϕ : [α, β] → [a, b] be a continuous differentiable
function, let ϕ(α) = a, ϕ(β) = b. Then∫ β

α

f
(
ϕ(t)

)
· ϕ′(t) dt =

∫ b

a

f(x) dx .

Proof. If F (x) is a primitive function to f(x) on [a, b] , then ac-
cording to the theorem about the substitution in an indefinite in-
tegral, Ψ(t) = F

(
ϕ(t)

)
is a primitive function to f(

(
ϕ(t)

)
·ϕ′(t)

on [α, β]. Thus∫ β

α

f
(
ϕ(t)

)
·ϕ′(t) dt = Ψ(β)−Ψ(α) = F

(
ϕ(β)

)
−F

(
ϕ(α)

)
=

= F (b)− F (a) =

∫ b

a

f(x) dx .
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Theorem. Let the function f(x) be continuous on an interval
[a, b] , let ϕ : [α, β] → [a, b] be a continuous differentiable
function that maps the interval [α, β] on [a, b], let ϕ′(t) 6= 0.
Then ∫ b

a

f(x) dx =

∫ β

α

f
(
ϕ(t)

)
· ϕ′(t) dt .

Proof. Let Ψ(t) be a primitive function to f
(
ϕ(t)

)
· ϕ′(t) on

[α, β]. Then the integral on the right side is equal to Ψ(β) −
Ψ(α). The assumptions of the theorem guarantee that there exists
an inverse function t = ϕ−1(x) to the function x = ϕ(t) and
F (x) = Ψ

(
ϕ−1(x)

)
is a primitive function to f(x). Thus

∫ b

a

f(x) dx = F (b)− F (a) = Ψ
(
ϕ−1(b)

)
−Ψ

(
ϕ−1(a)

)
=

= Ψ(β)−Ψ(α) =

∫ β

α

f
(
ϕ(t)

)
· ϕ′(t) dt .
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Integral of an even, odd or periodic function

Theorem. If f is an even integrable function on [−b, b], then
b∫
−b
f(x) dx = 2

b∫
0

f(x) dx.

Theorem. If f is an odd integrable function on [−b, b], then:
b∫
−b
f(x) dx = 0.
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Theorem. Let f be a periodic function with the period T , let a, a′

be real numbers. If one of the following integrals exists, then the
other one exists, too, and it is

a+T∫
a

f(x) dx =
a′+T∫
a′

f(x) dx.
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