LECTURE 9

LINE INTEGRALS

OF THE FIRST KIND

Line integral of the first kind

Definition 1. The set $\mathcal{C} \subset \mathbb{R}^{n}$ is called a simple regular curve in \mathbb{R}^{n} if there exists a 1-1 mapping

$$
\begin{equation*}
g:(a, b) \rightarrow \mathcal{C} ; \quad g(t)=\left(g_{1}(t), \ldots, g_{n}(t)\right), \tag{9.1}
\end{equation*}
$$

that has a continuous derivative

$$
\dot{g}(t)=\left(g_{1}^{\prime}(t), \ldots, g_{n}^{\prime}(t)\right) \neq(0, \ldots, 0)
$$

on the interval (a, b).

It is therefore the set of points $\boldsymbol{x}=\boldsymbol{g}(t)$, i.e.,

$$
\left(x_{1}, \ldots, x_{n}\right)=\left(g_{1}(t), \ldots, g_{n}(t)\right),
$$

where the mapping \boldsymbol{g} satisfies the contitions stated above. This mapping is called a parametrization of the curve \mathcal{C}, the equation $\boldsymbol{x}=\boldsymbol{g}(t)$ is called a parametric equation of the curve \mathcal{C}.

The vector

$$
\dot{g}(t)=\left(g_{1}^{\prime}(t), \ldots, g_{n}^{\prime}(t)\right)
$$

is a tangent vectorem to the curve \mathcal{C}.
We can imagine a curve as a trajectory of a point that is moving in time. Then $\boldsymbol{g}(\boldsymbol{t})$ gives the coordinates of this point in time t, the vector $\dot{\boldsymbol{g}}(\boldsymbol{t})$ gives its instantaneous velocity.

Special case: curves in \mathbb{R}^{2}

$$
(x, y)=\left(g_{1}(t), g_{2}(t)\right) \underbrace{\mathrm{d} y=g_{2}^{\prime}(t) \mathrm{d} t}_{\mathrm{d} x=g_{1}^{\prime}(t) \mathrm{d} t}
$$

Length element $\mathrm{d} s$ of a simple regular curve \mathcal{C} with the parametrization $\boldsymbol{g}(t)$ is equal to

$$
\begin{equation*}
\mathrm{d} s=\|\dot{\boldsymbol{g}}(t)\| \mathrm{d} t=\sqrt{\left(g_{1}^{\prime}(t)\right)^{2}+\left(g_{2}^{\prime}(t)\right)^{2}} \mathrm{~d} t \tag{9.2}
\end{equation*}
$$

Special case: curves in \mathbb{R}^{3}

$$
(x, y, z)=\left(g_{1}(t), g_{2}(t), g_{3}(t)\right)
$$

Length element $\mathrm{d} s$ of a simple regular curve \mathcal{C} with the parametrization $\boldsymbol{g}(t)$ is equal to

$$
\begin{equation*}
\mathrm{d} s=\|\dot{\boldsymbol{g}}(t)\| \mathrm{d} t=\sqrt{\left(g_{1}^{\prime}(t)\right)^{2}+\left(g_{2}^{\prime}(t)\right)^{2}+\left(g_{3}^{\prime}(t)\right)^{2}} \mathrm{~d} t \tag{9.3}
\end{equation*}
$$

Curves in \mathbb{R}^{n}

$$
(x, y)=\left(g_{1}(t), g_{2}(t)\right) \underbrace{\mathrm{d} s}_{\mathrm{d} x=g_{1}^{\prime}(t) \mathrm{d} t} \mathrm{~d} y=g_{2}^{\prime}(t) \mathrm{d} t
$$

Length element $\mathrm{d} s$ of a simple regular curve \mathcal{C} with the parametrization $\boldsymbol{g}(t)$ is equal to

$$
\begin{equation*}
\mathrm{d} s=\|\dot{g}(t)\| \mathrm{d} t=\sqrt{\left(g_{1}^{\prime}(t)\right)^{2}+\cdots+\left(g_{n}^{\prime}(t)\right)^{2}} \mathrm{~d} t \tag{9.4}
\end{equation*}
$$

Line integral of the first kind

Definition 2. Let \mathcal{C} be a simple regular curve in \mathbb{R}^{n}, let $\boldsymbol{g}:(a, b) \rightarrow \mathbb{R}$ be its parametrization. Let $f: \mathcal{C} \rightarrow \mathbb{R}$ be a function. If the Riemann integral

$$
\begin{equation*}
\int_{a}^{b} f(g(t))\|\dot{g}(t)\| \mathrm{d} t \tag{9.5}
\end{equation*}
$$

exists, then it is denoted by

$$
\begin{equation*}
\int_{\mathcal{C}} f \mathrm{~d} s \equiv \int_{a}^{b} f(g(t))\|\dot{g}(t)\| \mathrm{d} t \tag{9.6}
\end{equation*}
$$

and called the line integral of the first kind of the function f over the curve \mathcal{C}.

Properties

Linearity

If $\alpha, \boldsymbol{\beta}$ are real numbers and f, g functions, then the equality

$$
\begin{equation*}
\int_{\mathcal{C}}(\alpha f+\beta h) \mathrm{d} s=\alpha \int_{\mathcal{C}} f \mathrm{~d} s+\beta \int_{\mathcal{C}} h \mathrm{~d} s \tag{9.7}
\end{equation*}
$$

holds if the right side has a sense.
Additivity with respect to the curve
If $\mathcal{C}=\mathcal{C}_{1} \cup \mathcal{C}_{2}$ and $\mathcal{C}_{1} \cap \mathcal{C}_{2}$ contains at most the boundary points, then the equality

$$
\begin{equation*}
\int_{\mathcal{C}} f \mathrm{~d} s=\int_{\mathcal{C}_{1} \cup \mathcal{C}_{2}} f \mathrm{~d} s=\int_{\mathcal{C}_{1}} f \mathrm{~d} s+\int_{\mathcal{C}_{2}} f \mathrm{~d} s \tag{9.8}
\end{equation*}
$$

holds, if the right side has a sense.

- Example. Find the integral
$\int_{\mathcal{C}} x^{2} d s, \quad$ kde $\quad \mathcal{C}=\left\{(x, y) \in \mathbb{R}^{2} \mid y=\ln x, x \in\langle 1,2\rangle\right\}$.
Solution.
Consider the parametrization $x=g_{1}(t)=t, y=g_{2}(t)=\ln t$.
Then $\dot{\boldsymbol{g}}(t)=\left(1, \frac{1}{t}\right) \neq \mathbf{o}$.
$\int_{\mathcal{C}} x^{2} \mathrm{~d} s=\int_{1}^{2} t^{2}\left\|\left(1, \frac{1}{t}\right)\right\| \mathrm{d} t=\int_{1}^{2} t^{2} \sqrt{1+\frac{1}{t^{2}}} \mathrm{~d} t=\int_{1}^{2} t \sqrt{t^{2}+1} \mathrm{~d} t=$

$$
\begin{aligned}
& =\frac{1}{2} \int_{2}^{5} u^{1 / 2} \mathrm{~d} u=\frac{1}{2} \cdot \frac{2}{3}\left[u^{3 / 2}\right]_{2}^{5}=\frac{1}{3}\left(5^{3 / 2}-2^{3 / 2}\right) \text {. }
\end{aligned}
$$

- Example. Find the integral

$$
\int_{\mathcal{C}}(x+y) d s
$$

where \mathcal{C} is a line segment with the boundary points $A=(0,0), B=$ $(1,2)$.

Solution.
Parametrization: $x=t, y=2 t, t \in\langle 0,1\rangle$. For this parametrization we obtain tangent vector $\dot{\boldsymbol{g}}(t)=(1,2)$ with $\|\dot{\boldsymbol{g}}(t)\|=$ $\sqrt{5}$. Thus

$$
\int_{\mathcal{C}}(x+y) \mathrm{d} s=\int_{0}^{1}(t+2 t) \sqrt{5} \mathrm{~d} t=\frac{3}{2} \sqrt{5} .
$$

- Example. Find the integral

$$
\int_{\mathcal{C}} \frac{z^{2}}{x^{2}+y^{2}} \mathrm{~d} s
$$

where \mathcal{C} is one thread o the screw $x=r \cos t, y=r \sin t, z=$ $r t, t \in\langle 0,2 \pi\rangle$.

Solution. Tangent vector:

$$
\dot{\boldsymbol{g}}(t)=(-r \sin t, r \cos t, r)
$$

is size: $\|\dot{g}(t)\|=r \sqrt{2}$. Then

$$
\int_{\mathcal{C}} \frac{z^{2}}{x^{2}+y^{2}} \mathrm{~d} s=\int_{0}^{2 \pi} \frac{r^{2} t^{2}}{r^{2}} r \sqrt{2} \mathrm{~d} t=\frac{8 r \pi^{3} \sqrt{2}}{3}
$$

Some applications

Length $s(\mathcal{C})$ of a curve \mathcal{C} :

$$
s(\mathcal{C})=\int_{\mathcal{C}} \mathrm{d} s=\int_{t_{0}}^{t_{1}}\|\dot{\boldsymbol{g}}(t)\| \mathrm{d} t
$$

Weight $m(\mathcal{C})$ of a curve \mathcal{C} with the length density σ :

$$
m(\mathcal{C})=\int_{\mathcal{C}} \sigma \mathrm{d} s=\int_{t_{0}}^{t_{1}} \sigma(\boldsymbol{g}(t))\|\dot{\boldsymbol{g}}(t)\| \mathrm{d} t
$$

Static moments in \mathbb{R}^{2} :

$$
\begin{aligned}
& S_{y}(\mathcal{C})=\int_{\mathcal{C}} x \sigma \mathrm{~d} s=\int_{t_{0}}^{t_{1}} g_{2}(t) \sigma(\boldsymbol{g}(t))\|\dot{\boldsymbol{g}}(t)\| \mathrm{d} t \\
& S_{x}(\mathcal{C})=\int_{\mathcal{C}} y \sigma \mathrm{~d} s=\int_{t_{0}}^{t_{1}} g_{1}(t) \sigma(\boldsymbol{g}(t))\|\dot{\boldsymbol{g}}(t)\| \mathrm{d} t
\end{aligned}
$$

Coordinates $x_{c g}(\mathcal{C}), y_{c g}(\mathcal{C})$ of a centre of gravity of a curve \mathcal{C} :

$$
\begin{aligned}
& x_{c g}(\mathcal{C})=\frac{S_{y}(\mathcal{C})}{m(\mathcal{C})}=\frac{\int_{\mathcal{C}} x \sigma \mathrm{~d} s}{m(\mathcal{C})} \\
& y_{c g}(\mathcal{C})=\frac{S_{x}(\mathcal{C})}{m(\mathcal{C})}=\frac{\int_{\mathcal{C}} y \sigma \mathrm{~d} s}{m(\mathcal{C})}
\end{aligned}
$$

Static moments in \mathbb{R}^{3} :

$$
\begin{aligned}
& S_{y z}(\mathcal{C})=\int_{\mathcal{C}} x \sigma \mathrm{~d} s=\int_{\substack{t_{0} \\
t_{1}}}^{t_{1}(t) \sigma(\boldsymbol{g}(t))\|\dot{\boldsymbol{g}}(t)\| \mathrm{d} t} \\
& S_{x z}(\mathcal{C})=\int_{\mathcal{C}} y \sigma \mathrm{~d} s=\int_{t_{0}}^{t_{0}} g_{2}(t) \sigma(\boldsymbol{g}(t))\|\dot{\boldsymbol{g}}(t)\| \mathrm{d} t \\
& S_{x y}(\mathcal{C})=\int_{\mathcal{C}} z \sigma \mathrm{~d} s=\int_{t_{0}}^{t_{1}} g_{3}(t) \sigma(\boldsymbol{g}(t))\|\dot{\boldsymbol{g}}(t)\| \mathrm{d} t
\end{aligned}
$$

Coordinates $x_{c g}(\mathcal{C}), y_{c g}(\mathcal{C}), y_{c g}(\mathcal{C})$ of the centre of gravity of \mathcal{C} :

$$
x_{c g}(\mathcal{C})=\frac{\int_{\mathcal{C}} x \sigma \mathrm{~d} s}{m(\mathcal{C})}, \quad y_{c g}(\mathcal{C})=\frac{\int_{\mathcal{C}} y \sigma \mathrm{~d} s}{m(\mathcal{C})}, \quad z_{c g}(\mathcal{C})=\frac{\int_{\mathcal{C}} z \sigma \mathrm{~d} s}{m(\mathcal{C})} .
$$

Moments of inertia in \mathbb{R}^{2} :

$$
\begin{aligned}
& I_{x}(\mathcal{C})=\int_{\mathcal{C}} y^{2} \sigma \mathrm{~d} s=\int_{t_{0}}^{t_{1}} g_{2}^{2}(t) \sigma(g(t))\|\dot{\boldsymbol{g}}(t)\| \mathrm{d} t \\
& I_{y}(\mathcal{C})=\int_{\mathcal{C}} x^{2} \sigma \mathrm{~d} s=\int_{t_{0}}^{t_{1}} g_{1}^{2}(t) \sigma(g(t))\|\dot{\boldsymbol{g}}(t)\| \mathrm{d} t
\end{aligned}
$$

Moments of inertia in \mathbb{R}^{3} :

$$
\begin{aligned}
& I_{x}(\mathcal{C})=\int_{\mathcal{C}}\left(y^{2}+z^{2}\right) \sigma \mathrm{d} s=\int_{t_{0}}^{t_{1}}\left(g_{2}^{2}(t)+g_{3}^{2}(t)\right) \sigma(g(t))\|\dot{g}(t)\| \mathrm{d} t \\
& I_{y}(\mathcal{C})=\int_{\mathcal{C}}\left(x^{2}+z^{2}\right) \sigma \mathrm{d} s=\int_{t_{0}}^{t_{1}}\left(g_{2}^{2}(t)+g_{3}^{2}(t)\right) \sigma(g(t))\|\dot{g}(t)\| \mathrm{d} t \\
& I_{z}(\mathcal{C})=\int_{\mathcal{C}}\left(x^{2}+y^{2}\right) \sigma \mathrm{d} s=\int_{t_{0}}^{t_{1}}\left(g_{1}^{2}(t)+g_{2}^{2}(t)\right) \sigma(\boldsymbol{g}(t))\|\dot{\boldsymbol{g}}(t)\| \mathrm{d} t
\end{aligned}
$$

