LECTURE 9

LINE INTEGRALS OF THE FIRST KIND

Line integral of the first kind

Definition 1. The set $C \subset \mathbb{R}^n$ is called **a simple regular curve** in \mathbb{R}^n if there exists a 1-1 mapping

 $\boldsymbol{g}: (a,b) \rightarrow \mathcal{C}; \quad \boldsymbol{g}(t) = (g_1(t), \dots, g_n(t)), \quad (9.1)$

that has a continuous derivative

$$\dot{\boldsymbol{g}}(t)=(g_1'(t),\ldots,g_n'(t))
eq(0,\ldots,0)$$

on the interval (a, b).

It is therefore the set of points $\mathbf{x} = \mathbf{g}(t)$, i.e.,

$$(x_1,\ldots,x_n)=\left(g_1(t),\ldots,g_n(t)
ight),$$

where the mapping g satisfies the contitions stated above. This mapping is called a parametrization of the curve C, the equation x = g(t) is called a parametric equation of the curve C.

The vector

$$\dot{\boldsymbol{g}}(t) = (g_1'(t), \dots, g_n'(t))$$

is a tangent vectorem to the curve C.

We can imagine a curve as a trajectory of a point that is moving in time. Then g(t) gives the coordinates of this point in time t, the vector $\dot{g}(t)$ gives its instantaneous velocity.

Special case: curves in \mathbb{R}^2

$$\dot{g}(t) = (g_1(t), g_2(t))$$

$$ds = g'_1(t)dt$$

$$ds = (g'_1(t), g'_2(t))dt$$

Length element ds of a simple regular curve C with the parametrization g(t) is equal to

$$\mathrm{d}s = \|\dot{\boldsymbol{g}}(t)\| \,\mathrm{d}t = \sqrt{(g_1'(t))^2 + (g_2'(t))^2} \,\mathrm{d}t$$
 (9.2)

Special case: curves in \mathbb{R}^3

Length element ds of a simple regular curve C with the parametrization g(t) is equal to

$$ds = \|\dot{\boldsymbol{g}}(t)\| dt = \sqrt{(g_1'(t))^2 + (g_2'(t))^2 + (g_3'(t))^2 dt} \quad (9.3)$$

Curves in \mathbb{R}^n

$$(x,y) = (g_{1}(t), g_{2}(t))$$

$$ds = g'_{1}(t)dt$$

$$ds = (g'_{1}(t), g'_{2}(t))dt$$

Length element ds of a simple regular curve C with the parametrization g(t) is equal to

$$ds = \|\dot{\boldsymbol{g}}(t)\| dt = \sqrt{(g_1'(t))^2 + \dots + (g_n'(t))^2} dt \qquad (9.4)$$

Line integral of the first kind

Definition 2. Let C be a simple regular curve in \mathbb{R}^n , let $g: (a, b) \to \mathbb{R}$ be its parametrization. Let $f: C \to \mathbb{R}$ be a function. If the Riemann integral

$$\int_{a}^{b} f(\boldsymbol{g}(t)) \| \dot{\boldsymbol{g}}(t) \| \, \mathrm{d}t \tag{9.5}$$

exists, then it is denoted by

$$\int_{\mathcal{C}} f \, \mathrm{d}s \equiv \int_{a}^{b} f(\boldsymbol{g}(t)) \| \dot{\boldsymbol{g}}(t) \| \, \mathrm{d}t \tag{9.6}$$

and called the line integral of the first kind of the function f over the curve C..

Properties

Linearity

If α, β are real numbers and f, g functions, then the equality

$$\int_{\mathcal{C}} (\alpha f + \beta h) \, \mathrm{d}s = \alpha \int_{\mathcal{C}} f \, \mathrm{d}s + \beta \int_{\mathcal{C}} h \, \mathrm{d}s \qquad (9.7)$$

holds if the right side has a sense.

Additivity with respect to the curve

If $C = C_1 \cup C_2$ and $C_1 \cap C_2$ contains at most the boundary points, then the equality

$$\int_{\mathcal{C}} f \, \mathrm{d}s = \int_{\mathcal{C}_1 \cup \mathcal{C}_2} f \, \mathrm{d}s = \int_{\mathcal{C}_1} f \, \mathrm{d}s + \int_{\mathcal{C}_2} f \, \mathrm{d}s \qquad (9.8)$$

holds, if the right side has a sense.

• Example. Find the integral

$$\int\limits_{\mathcal{C}} x^2 ds, \hspace{1em} ext{kde} \hspace{1em} \mathcal{C} = \{(x,y) \in \mathbb{R}^2 \mid y = \ln x, x \in \langle 1,2
angle \}.$$

Solution.

Consider the parametrization $x=g_1(t)=t, y=g_2(t)=\ln t$. Then $\dot{\pmb{g}}(t)=\left(1,rac{1}{t}
ight)
eq {
m o}.$

$$\int_{\mathcal{C}} x^2 \, \mathrm{d}s = \int_{1}^{2} t^2 \left\| \left(1, \frac{1}{t} \right) \right\| \, \mathrm{d}t = \int_{1}^{2} t^2 \sqrt{1 + \frac{1}{t^2}} \, \mathrm{d}t = \int_{1}^{2} t \sqrt{t^2 + 1} \, \mathrm{d}t = \int_{1}^{2} t \sqrt{t^2 +$$

$$= \left|egin{array}{ccccc} t^2+1 &=& u, & 2t\,\mathrm{d}t &=& \mathrm{d}u\ t &=& 1 \;\Rightarrow\; u \;\;=\; 2\ t \;\;=\; 2 \;\;\Rightarrow\; u \;\;=\; 5 \end{array}
ight|=$$

$$= \frac{1}{2} \int\limits_{2}^{5} u^{1/2} \,\mathrm{d} u = \frac{1}{2} \cdot \frac{2}{3} [u^{3/2}]_{2}^{5} = \frac{1}{3} (5^{3/2} - 2^{3/2}).$$

• Example. Find the integral

$$\int\limits_{\mathcal{C}} (x+y) ds,$$

where C is a line segment with the boundary points A = (0, 0), B = (1, 2).

Solution.

Parametrization: $x = t, y = 2t, t \in \langle 0, 1 \rangle$. For this parametrization we obtain tangent vector $\dot{g}(t) = (1, 2)$ with $\|\dot{g}(t)\| = \sqrt{5}$. Thus

$$\int_{\mathcal{C}} (x+y) \, \mathrm{d}s = \int_{0}^{1} (t+2t) \sqrt{5} \, \mathrm{d}t = rac{3}{2} \sqrt{5} \, \mathrm{d}t$$

• Example. Find the integral

$$\int\limits_{\mathcal{C}} rac{z^2}{x^2+y^2} \, \mathrm{d}s,$$

where C is one thread o the screw $x = r \cos t, y = r \sin t, z = rt, t \in \langle 0, 2\pi \rangle$.

Solution. Tangent vector:

$$\dot{\boldsymbol{g}}(t) = (-r\sin t, r\cos t, r)$$

is size: $\|\dot{\boldsymbol{g}}(t)\| = r\sqrt{2}$. Then

$$\int_{\mathcal{C}} \frac{z^2}{x^2 + y^2} \, \mathrm{d}s = \int_{0}^{2\pi} \frac{r^2 t^2}{r^2} r \sqrt{2} \, \mathrm{d}t = \frac{8r\pi^3 \sqrt{2}}{3}.$$

Some applications

Length $s(\mathcal{C})$ of a curve \mathcal{C} :

$$s(\mathcal{C}) = \int\limits_{\mathcal{C}} \mathrm{d}s = \int\limits_{t_0}^{t_1} \|\dot{oldsymbol{g}}(t)\| \,\mathrm{d}t$$

Weight $m(\mathcal{C})$ of a curve \mathcal{C} with the length density σ :

$$m(\mathcal{C}) = \int\limits_{\mathcal{C}} \sigma \, \mathrm{d}s = \int\limits_{t_0}^{t_1} \sigma(oldsymbol{g}(t)) \| \dot{oldsymbol{g}}(t) \| \, \mathrm{d}t$$

Static moments in \mathbb{R}^2 :

$$S_y(\mathcal{C}) = \int\limits_{\mathcal{C}} x\sigma \,\mathrm{d}s = \int\limits_{t_0}^{t_1} g_2(t)\sigma(\pmb{g}(t)) \|\dot{\pmb{g}}(t)\| \,\mathrm{d}t$$
 $S_x(\mathcal{C}) = \int\limits_{\mathcal{C}} y\sigma \,\mathrm{d}s = \int\limits_{t_0}^{t_1} g_1(t)\sigma(\pmb{g}(t)) \|\dot{\pmb{g}}(t)\| \,\mathrm{d}t$

Coordinates $x_{cg}(\mathcal{C})$, $y_{cg}(\mathcal{C})$ of a centre of gravity of a curve \mathcal{C} :

$$egin{aligned} x_{cg}(\mathcal{C}) &= rac{S_y(\mathcal{C})}{m(\mathcal{C})} = rac{\int x \sigma \, \mathrm{d}s}{m(\mathcal{C})} \,, \ y_{cg}(\mathcal{C}) &= rac{S_x(\mathcal{C})}{m(\mathcal{C})} = rac{\int y \sigma \, \mathrm{d}s}{m(\mathcal{C})} \end{aligned}$$

Static moments in \mathbb{R}^3 :

$$S_{yz}(\mathcal{C}) = \int_{\mathcal{C}} x\sigma \,\mathrm{d}s = \int_{t_0}^{t_1} g_1(t)\sigma(\boldsymbol{g}(t)) \|\dot{\boldsymbol{g}}(t)\| \,\mathrm{d}t$$

 $S_{xz}(\mathcal{C}) = \int_{\mathcal{C}} y\sigma \,\mathrm{d}s = \int_{t_0}^{t_1} g_2(t)\sigma(\boldsymbol{g}(t)) \|\dot{\boldsymbol{g}}(t)\| \,\mathrm{d}t$
 $S_{xy}(\mathcal{C}) = \int_{\mathcal{C}} z\sigma \,\mathrm{d}s = \int_{t_0}^{t_1} g_3(t)\sigma(\boldsymbol{g}(t)) \|\dot{\boldsymbol{g}}(t)\| \,\mathrm{d}t$

Coordinates $x_{cg}(\mathcal{C})$, $y_{cg}(\mathcal{C})$, $y_{cg}(\mathcal{C})$ of the centre of gravity of \mathcal{C} :

$$x_{cg}(\mathcal{C}) = rac{\int\limits_{\mathcal{C}}^{x\sigma\,\mathrm{d}s} ds}{m(\mathcal{C})}, \hspace{1em} y_{cg}(\mathcal{C}) = rac{\int\limits_{\mathcal{C}}^{y\sigma\,\mathrm{d}s} ds}{m(\mathcal{C})}, \hspace{1em} z_{cg}(\mathcal{C}) = rac{\int\limits_{\mathcal{C}}^{z\sigma\,\mathrm{d}s} ds}{m(\mathcal{C})}.$$

Moments of inertia in \mathbb{R}^2 :

Moments of inertia in \mathbb{R}^3 :

$$I_x(\mathcal{C}) = \int\limits_{\mathcal{C}} (y^2 + z^2) \sigma \, \mathrm{d}s = \int\limits_{t_0}^{t_1} (g_2^2(t) + g_3^2(t)) \sigma(oldsymbol{g}(t)) \| \dot{oldsymbol{g}}(t)\| \, \mathrm{d}t$$

$$I_y(\mathcal{C}) = \int\limits_{\mathcal{C}} (x^2 + z^2) \sigma \, \mathrm{d}s = \int\limits_{t_0}^{t_1} (g_2^2(t) + g_3^2(t)) \sigma(\boldsymbol{g}(t)) \| \dot{\boldsymbol{g}}(t) \| \, \mathrm{d}t$$

$$I_z(\mathcal{C}) = \int\limits_{\mathcal{C}} (x^2 + y^2) \sigma \, \mathrm{d}s = \int\limits_{t_0}^{t_1} (g_1^2(t) + g_2^2(t)) \sigma(\boldsymbol{g}(t)) \| \dot{\boldsymbol{g}}(t) \| \, \mathrm{d}t$$