
CHAPTER 1

NUMBER SETS



Sets – basic knowledge

Set is any collection of objects. It is determined, if it is possible to
decide unambiguously on each object whether it belongs to it or
not. Each element belonging to a set is named its element.

Notation:

Set . . . A, B, Metc. (capital letters)

Their elements . . . a, b, x etc. (small letters)

a is an element of a set A . . . a ∈ A

b is not an element of a set A . . . b 6∈ A.

Empty set: A = ∅ . . . no element

Non-empty set: A 6= ∅ . . . at least one element

Finite set . . . number of elements given by a natural number

Infinite set . . . otherwise
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Determining sets

List of elements

e.g., A = {1, 3, 5, 7}

Characteristic property

e.g., A = {x ∈ R; V (x)}
A is the set of all x from the set R for which V (x) holds

(or: that have a property V (x))
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Set relations and operations

A, B . . . sets

B ⊂ A . . . B is a subset of A, if each element of B belongs to A

* Example
A = {1, 3, 5, 7, 9, 11, 13}, B = {3, 5, 11, 13} . . . B ⊂ A

A = B . . . sets A, B are called equal, if A ⊂ B and B ⊂ A,

i.e., they contain the same elements.
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Union A ∪ B . . . the set of all elements that belong to A or B
Obviously: A ∪ ∅ = A.

Intersection A ∩ B
. . . the set of all elements that belong to A and B
Obviously: A ∩ ∅ = ∅
Disjoint sets A, B . . . A ∩ B = ∅

* Example

• {2, 3, 4, 5, 6, 7, 8}∪{1, 3, 5, 7, 9, 11, 13} = {1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 13}

• {2,3, 4,5, 6,7, 8} ∩ {1,3,5,7, 9, 11, 13} = {3,5,7}
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Set difference A \ B
. . . the set of all elements of A that do not belong to B.
Complement of B in A . . . Bc = A \ B, where B ⊂ A

* Example

• Difference of sets:

{2, 3, 4, 5, 6, 7, 8} \ {1, 3, 5, 7, 9, 11, 13} = {2, 4, 6, 8}

• Complement of a set
B = {3, 5, 7, 9} in a set A = {1, 3, 5, 7, 9, 11, 13}:

B′A = {1, 11, 13}.
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Number sets

N ⊂ Z ⊂ Q ⊂ R ⊂ C
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Natural numbers

N =
{
1, 2, 3, . . .

}
, N0 =

{
0, 1, 2, 3, . . .

}
Natural numbers allow to express the number of elements of fi-
nite non-empty sets. A natural number (consider e.g. 3) can be
understood as a common property of the following sets:

The set of natural numbers is closed with respect to addition
and multiplication, not with respect to subtraction (e.g., 2− 5 =

−3) and division (e.g., 2 : 5 = 0.40). In the domain of natural
numbers, there exists neither opposite or inverse number to any
natural number.
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Positional decimal system

For example: 87 956 =

8 · 10 000 + 7 · 1 000 + 9 · 100 + 5 · 10 + 6 · 1

= 8 · 104 + 7 · 103 + 9 · 102 + 5 · 101 + 6 · 100 .

In general: a = anan−1 . . . a1a0 means

a = an · 10n + an−1 · 10n−1 + · · ·+ a1 · 101 + a0 · 100 ,

where n ∈ N0, an, an−1, . . . , a1, a0 ∈ {0, 1, . . . , 9}, an 6= 0
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Axiom of mathematical induction.

Let U ⊂ N be a set such that

1) 1 ∈ U ,

2) if n ∈ U, then (n+ 1) ∈ U.

Then U = N.

For example, to prove that all natural numbers satisfy a given
equation, it is sufficient to prove it for n = 1 and then to prove that
if the equation hold for n, it holds also for n+ 1.
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* Example 1.

Prove that the following equation holds for each n ∈ N :

12 + 22 + · · ·+ n2 =
n(n+ 1)(2n+ 1)

6
.

Solution. Denote U = {n ∈ N | (1) holds for n}.

Step 1: 1 ∈ U : 12 =
1 · 2 · 3

6

Step 2: n ∈ U ⇒ (n+ 1) ∈ U :

12 + 22 + · · ·+ n2 + (n+ 1)2 =

=
n(n+ 1)(2n+ 1)

6
+ (n+ 1)2 =

(n+ 1)(n+ 2)(2n+ 3)

6
,

which is the equation (1) for n = n+ 1 . �
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The set of integers

Z =
{
. . . , −2, −1, 0, 1, 2, . . .

}

The set of integers is an extension of N0 containing all solutions
of equations of the form

n1 + x = n2 , where n1, n2 ∈ N .

The set of rational numbers

Q =
{ z

n
, where z ∈ Z , n ∈ N

}

The set of rational numbers is an extension of the set Z containing
the set of all solutions of equations of the form

z1x = z2 , kde z1, z2 ∈ Z .
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The set of real numbers

R = {a0.a1a2 . . . an . . . , a0 ∈ Z , ak ∈ {0, . . . , 9} pro k ≥ 1} ,

where to each n0 ∈ N exists n > n0 such that an 6= 9.

Without the last condition: the expansion would not be unique,
e.g., number 1 would have two expansions:

1.000 . . . a 0.999 . . . ,

9

10
+

9

100
+

9

1000
+ · · ·+ 9

10n
+ · · · = 9

10
· 1

1− 1/10
= 1 .

Rational numbers: only finite or periodic decimal expansion

Calculus 1 c© Magdalena Hyksova, CTU in Prague 13



Ordering or real numbers

å For any two real numbers a, b, one and only one relation
holds: a < b, a = b, a > b.

å For any three real numbers a, b, c,

• If a < b and b < c, then a < c.

• If a < b, then a+ c < b+ c.

• If a < b and c > 0, then ac < bc.

å For any four real numbers a, b, c, d,

• If a < b and c < 0 , then ac > bc.

• If a < b and c < d, then a+ c > b+ d.

• If 0 < a < b and 0 < c < d, then ac < bd.

• Je-li 0 < a < b, then 1/a < 1/b .
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Absolute value of a real number a :

| a | =


a, je-li a ≥ 0,

−a, je-li a < 0.

* Example
|5| = 5, | − 5| = 5 = −(−5)
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Distance of real numbers

For any x, y, z ∈ R, the following conditions are satisfied:

1. |x− y| ≥ 0,

2. |x− y| = 0⇐⇒ x = y,

3. |x− z| ≤ |x− y|+ |y − z| (triangle inequality).

On a real axis, | a | represents a distance of a from the origin;
| a− b | represents a distance of a and b.
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Extended set of real numbers: R∗ = R ∪ {+∞,−∞}
New symbols +∞, −∞ with the property:

−∞ < x < +∞ for any x ∈ R

Extension of algebraic operations:∣∣±∞∣∣ = +∞ , ±∞+ x = ±∞ for any x ∈ R ,

+∞+ (+∞) = +∞ , −∞− (−∞) = −∞ ,

x · (±∞) = ±∞ for any x > 0 ,

x · (±∞) = ∓∞ for any x < 0 ,

±∞
x

= ±∞ for any x > 0 ,
±∞
x

= ∓∞ for any x < 0 ,

x

±∞
= 0 for any x ∈ R .

Cannot be defined: +∞+(−∞), 0 · (±∞), 0/0, ±∞/±∞ .
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Intervals

å Bounded interval (on number axis: piece of a straight line)

å Closed: 〈a, b〉 = {x ∈ R; a ≤ x ≤ b}

-• •
a b x

å Half-closed:

〈a, b) = {x ∈ R; a ≤ x < b} , (a, b〉 = {x ∈ R; a < x ≤ b}
-• ◦

a b x
-◦ •

a b x

å Open: (a, b) = {x ∈ R; a < x < b}
-◦ ◦

a b x
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å Unbounded

å Left-bounded:

〈a,+∞) = {x ∈ R;x ≥ a} , (a,+∞) = {x ∈ R;x > a}

-•
a x

-◦
a x

å Right-bounded:

(−∞, b〉 = {x ∈ R;x ≤ b} , (−∞, b) = {x ∈ R;x < b}

-•
b x

-◦
b x

å Unbounded: (−∞,+∞) = R

-

0 x
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The set of complex numbers

C =
{
x+ iy | x, y ∈ R, i2 = −1}
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Absolute value of a complex number z = x+ iy :

|z| =
√
zz ≡

√
x2 + y2

Algebraic form:

z = x+ iy

Goniometric form:

z = |z|(cosϕ+ i sinϕ) = |z| cosϕ+ i|z| sinϕ .

Exponential form:

z = |z|e iϕ , where e iϕ = cosϕ+ i sinϕ , ϕ ∈ R .
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Sets of real numbers and their properties

Definition 1. A set M ⊂ R is called

å bounded from above if there exists a real number
U ∈ R, called upper bound, such that x ≤ U for every
x ∈M ;

å bounded from below if there exists a real number
L ∈ R, called upper bound, such that x ≥ L for every
x ∈M ;

å bounded if it is bounded both from above and below.
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Definition 2. Let M ⊂ R. A number S ∈ R is called supre-
mum of a set M if it is the least upper bound, i.e.,

1. for every x ∈M, x ≤ S,

2. for every S ′ < S there exists x ∈M such that x > S ′.
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Definition 3. Let M ⊂ R. A number s ∈ R is called infimum
of a set M if it is the greatest lower bound, i.e.,

1. for every x ∈M, x ≥ s,

2. for every s′ > s there exists x ∈M such that x < s′.
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Theorem 1 on supremum and infimum in R
Every nonempty set of real numbers that is bounded from above
has a supremum, and every nonempty set of real numbers that
is bounded from below has an infimum.

Remark. Notice that the proposition does not hold in the set of
rational numbers. It is sufficient to consider

M =
{
q ∈ Q ; q2 < 2

}
.

In R :

supremum:
√
2, infimum: −

√
2 (not rational!)

In Q :

supremum and infimum do not exist
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Definition 4. Let ε > 0. An ε−neighbourhood of a ∈ R :

Uε(a) =
{
x ∈ R ; |x− a| < ε

}
.

Definition 5. A punctured ε−neighbourhood (also ring
neighbourhood) of a ∈ R : Pε(a) = Uε(a) \ {a}, i.e.,

Pε(a) =
{
x ∈ R ; 0 < |x− a| < ε

}
.
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Let ε > 0. An ε−neighbourhood of +∞ is defined as

Uε(+∞) =

{
x ∈ R ; x >

1

ε

}
∪ {+∞},

and an ε−neighbourhood of −∞ is defined as

Uε(−∞) =

{
x ∈ R ; x < −1

ε

}
∪ {−∞} .

Punctured ε−neighbourhoods of ±∞ :

Pε(+∞) =

{
x ∈ R ; x >

1

ε

}
,

Pε(−∞) =

{
x ∈ R ; x < −1

ε

}
.
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Set Rn and its subsets
In the second half of this semester, we will work with the set of
ordered n-tuples of real numbers, usually denoted as Rn :

Rn = {x = (x1, x2, . . . , xn); x1, x2, . . . , xn ∈ R} (1.1)

i.e.,
Rn = R× R× · · · × R︸ ︷︷ ︸

n times

Multiplication by a real number a and addition in Rn :

ax = a
(
x1, x2, . . . , xn

)
=
(
ax1, ax2, . . . , axn

)
,

x+y =
(
x1, x2, . . . , xn

)
+
(
y1, y2, . . . , yn

)
=
(
x1+y1, x2+y2, . . . , xn+yn

)
.

As we know from linear algebra: Rn with these operations is a
vector space over a field of real numbers.

Distance of two points x,y ∈ Rn :

d(x,y) = ‖y − x‖ =
√

(y1 − x1)2 + · · ·+ (yn − xn)2. (1.2)
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Definition 6. Let M ∈ Rn, ε > 0. An ε−neighbourhood of
a is a set Uε

(
a
)
= {x ∈M | d

(
x,a

)
< ε}.

A ε-punctured neighbourhood of a is a set

Pε

(
a
)
= {x ∈M | 0 < d

(
x,a

)
< ε}.

Remark. Obviously: Pε

(
a
)
= Uε

(
a
)
\
{
a
}
.
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Definition 7. Consider a set M ⊂ Rn. A point a is called

å an interior point of M if there exists Uε(a) ⊂M .

å an exterior point of M it there exists Uε(a) such that
Uε(a) ∩M = ∅.

å a boundary point of M if every Uε(a) has a non-empty
intersection both with M and MC = R \M .
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Definition 8. A set M ⊂ Rn is called

å open if and only if all its points are interior,
å closed if and only if its complement MC = Rn \M is

an open set.

* Example 2.

• M = (−1, 2) ∪ (3, 5) is an open set.

• M = 〈−1, 2〉 ∪ 〈3, 5〉 is a closed set.

• M = (−1, 2) ∪ (3, 5〉 is neither open or closed.

2

M

1 3 5 2

M

1 3 5 2

M

1 3 5

 closed open  neither open or closed
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Definition 9. The set of all interior points of a set M is
denoted by M◦ and called interior of M .

Definition 10. A complement to an interior of M is called
closure of M . It is denoted by M , i.e., M = R \

(
R \M

)◦.
Definition 11. The set of all boundary points of M is
denoted by ∂M and called boundary of M .

* Example 3.

Consider M = (−1, 2) ∪ (3, 5〉 .

M◦ = (−1, 2)∪(3, 5) , M = 〈−1, 2〉∪〈3, 5〉 , ∂M = {−1, 2, 3, 5} .
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Definition 12. A point x is called

å an accumulation point of a set M if M ∩Pε(x) 6= ∅ for
every punctured neighbourhood Pε(x),

å isolated point of a set M if there exists a punctured
neighbourhood Pε(x) such that M ∩ Pε(x) = ∅.

* Example 4.

21 4

    M  (1,2)     {4}   

isolated point: 4accumulation point: any x  ∈  1, 2
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Definition 13. M ⊂ Rn is called bounded if there exists
K ∈ R such that

d(x,O) ≤ K.

for every x ∈M.

Definition 14. A closed and bounded set M ⊂ Rn is called
compact.
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