
CHAPTER 2

SEQUENCES



Mapping

Definition 1. Consider two non-empty sets A, B. A map-
ping of a set A to B is defined as a set F of ordered pairs
(x, y) ∈ A × B, where for every x ∈ A there exists exactly
one element y ∈ B such that (x, y) ∈ F .

An element x is called a preimage of an element y, an
element y is called an image of x in the mapping F. We
also say that y is the value of the mapping F in a point x
and write y = F (x) or x 7→ F (x). A set A is called a domain
of a mapping F and it is also denoted by a symbol D(F ) or
DF . The set of all images in the mapping F is called range
of the mapping F and it is denoted by H(F ) or HF . It is
H(F ) ⊂ B.
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Symbolically, a mapping F from A to B is expressed as follows:

F : A→ B, D(F ) = A
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Sequence of real numbers

Definition 2. A sequence
(
an
)

of real numbers f : N→ R,
where an = f(n).

A sequence therefore assigns a unique element an = f(n) ∈ R,
called term of a sequence, to every n ∈ N. The whole sequence
is usually denoted by

(
an
)
. A graph of a sequence consists of

isolated points:
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* Example 1.

Arithmetic sequence is defined by a formula:

a1 ∈ R , an = a1 + (n− 1)d ,

where a1 , d are given real numbers.

Terms of an arithmetic sequence satisfy the condition: an+1 −
an = d .

A number d is called difference of an arithmetic sequence.

By mathematical induction it can be proved that the sum of the
first n terms of an arithmetic sequence satisfy the equation:

sn =

n∑
k=1

ak = a1 + a2 + · · ·+ an =
n
(
a1 + an

)
2

= na1 +
n(n− 1)

2
d .

We can also consider:
sn = a1 +(a1 + d) + (a1 + 2d) + · · ·+ (a1 + (n− 1)d)

sn = an +(an − d) + (an − 2d) + · · ·+ (an − (n− 1)d)

2sn = (a1 + an) +(a1 + an) + (a1 + an) + · · ·+ (a1 + an)

=⇒ 2sn = n(a1 + an) =⇒ sn = 1
2n(a1 + an)
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* Example 2.

Geometric sequence is defined by a formula

a1 ∈ R , an = a1q
n−1 ,

where a1 , q are given real numbers.

If a1q 6= 0, the equation
an+1

an
= q .

holds for all n ∈ N. This ratio is called quotient of a geometric
sequence.

By mathematical induction it can be proved that the sum of the
first n elements of a geometric sequence satisfy the equation:

sn =

n∑
k=1

ak = a1
(
1 + q + q2 + · · ·+ qn−1

)
=


a1

qn − 1

q − 1
pro q 6= 1,

na1 for q = 1.
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Properties of Sequences

Definition 3. A sequence
(
an
)

is called bounded from
above, it there exists K ∈ R such that an ≤ K for all n ∈ N.

an

0
n

K
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Definition 4. A sequence
(
an
)

is called bounded from
below, it there exists K ∈ R such that an ≥ K for all n ∈ N.

an

0

n

K
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Definition 5. A sequence
(
an
)

is called bounded from
above, it there existsK ∈ R such that |an| ≤ K for all n ∈ N.

an

0
n

K

K
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* Example 3.

Let d > 0. An arithmetic sequence
(
an
)

is bounded from bellow by
a1, but it is not bounded from above, and thus it is not bounded.

* Example 4.

Consider a geometric sequence
(
an
)

with a1 6= 0.

If q < −1 then it is bounded neither from bellow nor above.

If |q| = 1 then it is bounded (e.g., consider K =
∣∣a1∣∣).

If q > 1 then it is bounded from below (e.g., K =
∣∣a1∣∣).
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Definition 6. A sequence
(
an
)

is called

å increasing if an < an+1 for all n ∈ N,

å decreasing if an > an+1 for all n ∈ N,

å non-decreasing if an ≤ an+1 for all n ∈ N,

å non-increasing if an ≥ an+1 for all n ∈ N.

A sequence satisfying one of the above-stated conditions is called
monotone. If it is increasing or decreasing, it is also called strictly
monotone.

* Example 5.

Consider a sequence
(
an
)
, where an =

(−1)n+1

n
.

Terms of the sequence: 1 , −1
2
, 1

3
, −1

4
, 1

5
, −1

6
, . . . .

This sequence is not monotone, it is bounded by 1.
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Definition 7. Consider a sequence
(
an
)

and an increasing
sequence of natural numbers

(
kn
)
, i.e.,

kn ∈ N a kn < kn+1 .

A sequence
(
bn
)
, where bn = akn , is called a subsequence

of a sequence
(
an
)
.

* Example 6.

A sequence
(
bn
)

defined by the equation

bn =
(−1)n2+1

n2

is a subsequence of a sequence
(
an
)
, where

an =
(−1)n+1

n
.

In this case, kn = n2 (b1 = 1 = a1; b2 = −1
4
= a4 . . . ).
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* Example 7.

A sequence
(
cn
)
, where cn =

1

n2
, is not a subsequence of

(
an
)
,

where

an =
(−1)n+1

n
,

since no increasing sequence of natural numbers
(
kn
)

exists such
that akn = cn = 1

n2 (c1 = 1 = a1; c2 =
1
4
, a4 = −1

4
).

* Example 8.

A sequence
(
dn
)

with terms

1 , −1

2
,
1

3
,
1

5
, −1

4
,
1

7
,
1

9
, −1

6
,

1

11
, . . .

is not selected from a sequence
(
an
)
, even though the sets of

terms of both sequences are equal.

Calculus 1 c© Magdalena Hyksova, CTU in Prague 13



Algebraic operations

Multiplication of a sequence
(
an
)

by a real number c ∈ R :

c
(
an
)
=
(
can
)
.

A sum of sequences
(
an
)

and
(
bn
)
:(

an
)
+
(
bn
)
=
(
an + bn

)
.

A difference of sequences
(
an
)

and
(
bn
)
:(

an
)
·
(
bn
)
=
(
an · bn

)
.

A quotient of sequences
(
an
)
,
(
bn
)
, where bn 6= 0 for all n ∈ N :(

an
)(

bn
) =

(
an
bn

)
.
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Limit of a sequence

Definition 8. We say that a sequence
(
an
)

has a limit
a ∈ R∗, if for every ε > 0 there exists n0 ∈ N such that
an ∈ Uε(a) for all n > n0.

We write lim
n→∞

an = a or simply lim an = a.

Notice that for a ∈ R, an ∈ Uε(a) means that |an − a| < ε. In this
case, we speak about a proper limit.
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A proper limit can also be defined separately as follows.

Definition 9. We say that a sequence
(
an
)

has a proper
limit a ∈ R, if for every ε > 0 there exists n0 ∈ N such that
|an − a| < ε for all n > n0.
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* Example 9.

Prove that lim
n→∞

n+ 4

n3 + n+ 1
= 0.

Solution. Let ε > 0 is given. An inequality

n+ 4

n3 + n+ 1
<

5n2

n3
=

5

n

implies that for n0 ∈ N such that
5

n0

< ε, the following equation

holds for all n ∈ N, n > n0 :∣∣∣∣ n+ 4

n3 + n+ 1
− 0

∣∣∣∣ = n+ 4

n3 + n+ 1
<

5

n
<

5

n0

< ε .

It is sufficient to consider n0 =

[
5

ε

]
+ 1, where [x] is a so-called

whole part of a real number x, which is defined for any x ∈ R as
a unique integer satisfying the inequalities [x] ≤ x < [x] + 1.
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If a limit a is infinite, it is called improper.
In this case, an ∈ Uε(+∞) means that an > 1/ε and an ∈ Uε(−∞)

means that an < −1/ε. It can also be defined separately:

Definition 10. We say that a sequence
(
an
)

has an impro-
per limit +∞ , if for every K ∈ R there exists n0 such that
an > K for all n > n0 .
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Definition 11. We say that a sequence
(
an
)

has an impro-
per limit −∞ , if for every K ∈ R there exists n0 such that
an < K for all n > n0 .
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Theorem 1. Every sequence has at most one limit.

Proof. By contradiction:

If
(
an
)

had two different limits a and b, a 6= b, it would be possi-
ble to choose disjoint neighbourhoods of these points, Uε1(a) and
Uε2(b) with Uε1(a) ∩ Uε2(b) = ∅.

For finite a, b ∈ R we can consider e.g. ε1 = ε2 =
|a− b|

3
> 0.

From definition of a limit: there exists n1 ∈ N such that an ∈ Uε1(a)
for all n > n1, and n2 such that an ∈ Uε2(a) for all n > n2.

But then an ∈ Uε1(a) ∩ Uε2(b) = ∅ for all n > max
(
n1, n2

)
.

The assumption that a is different from b therefore leads to a con-
tradiction, thus it must be a = b. �

Calculus 1 c© Magdalena Hyksova, CTU in Prague 20



Definition 12. If a sequence
(
an
)

has a proper limit, it is
called convergent. Otherwise (i.e., its limit is improper or
does not exist) it is called divergent.

Theorem 2. Every convergent sequence is bounded.

Proof. Let lim
n→∞

an = a ∈ R. Let us choose ε = 1. Then there
exists n0 ∈ N such that a− 1 < an < a+ 1 for all n > n0. Denote

K = max {a1, a2, . . . , an0 , a+ 1} , L = min {a1, a2, . . . , an0 , a− 1} .

These values K and L exist, since they represent maximum and
minimum of a finite set, respectively, and the inequality L ≤ an ≤
K holds for all n ∈ N. �
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Theorem 3. Let
(
an
)

and
(
bn
)

be convergent sequences, c ∈ R .
Let lim

n→∞
an = a, lim

n→∞
bn = b.

Then the sequences(
can
)
,
(
an + bn

)
,
(
an · bn

)
converge, too, and the following equations hold:

lim
n→∞

(
can
)
= ca ,

(
an + bn

)
= a+ b , lim

n→∞

(
an · bn

)
= ab .

If lim
n→∞

bn 6= 0, then the sequence
(
an
bn

)
convergs to the limit

lim
n→∞

(
an
bn

)
=
a

b
.
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Theorem 4. Let
(
an
)

and
(
bn
)

be convergent sequences such
that an ≤ bn for all n ∈ N, then lim

n→∞
an ≤ lim

n→∞
bn.

Proof. Denote lim
n→∞

an = a, lim
n→∞

bn = b.

If a > b, then for ε =
a− b
2

> 0 there exist na, nb such that

a − ε =
a+ b

2
< an for all n > na and bn < b + ε =

a+ b

2
for all

n > nb. Thus bn <
a+ b

2
< an for all n > max

(
na, nb

)
, which is a

contradiction. �

Remark: The limits a and b can be equal, a = b, even if an < bn

for all n ∈ N. For example: an = 0, bn =
1

n
.
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Theorem 5. Let sequences
(
an
)
,
(
bn
)
,
(
cn
)

be such that an ≤
bn ≤ cn for all n ∈ N. If limits of

(
an
)

and
(
cn
)

exist and are equal,
i.e., lim

n→∞
an = lim

n→∞
cn = a, then the limit of a sequence

(
bn
)

exists,
too, and is equal to lim

n→∞
bn = a.

Proof. The assumption is obvious for lim
n→∞

an = +∞ or lim
n→∞

cn =

−∞. Let a ∈ R. Then for each ε > 0 there exist na, nc such that
a − ε < an for all n > na and cn < a + ε for all n > nb. Thus
a− ε < an ≤ bn ≤ cn < a+ ε for all n > n0 = max

(
na, nb

)
. �
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Theorem 6. For any sequence
(
an
)
, lim
n→∞

an = 0 if and only if

lim
n→∞

∣∣an∣∣ = 0.

Proof. The proposition follows directly from the definition of a li-
mit. �

Theorem 7. If lim
n→∞

an = 0 and a sequence
(
bn
)

is bounded, then
lim
n→∞

anbn = 0.

Proof. Since lim
n→∞

an = 0, it is also lim
n→∞

∣∣an∣∣ = 0. Since a sequence(
bn
)

is bounded, there exists K ∈ R such that −K ≤ bn ≤ K for
all n ∈ N. Obviously, −K

∣∣an∣∣ ≤ ∣∣anbn∣∣ ≤ K
∣∣an∣∣, lim

n→∞
K
∣∣an∣∣ = 0.

�
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* Example 10.

Find the limit of a sequence an =
sinn!

n
.

Solution: Denote

an = bn · cn, where bn =
1

n
, cn = sinn!.

Obviously,

lim bn = 0;∣∣sinn!∣∣ ≤ 1.

A sequence
(
cn
)

is therefore bounded and the previous theorem
imply that lim

n→∞
an = lim

n→∞
bncn = 0, i.e.,

lim
n→∞

sinn!

n
= 0.
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* Example 11.

Find the limit of a sequence an =
2cosn

n+ sinn!
.

Solution: Denote

an = bn · cn, where bn =
1

n
, cn =

2cosn

1 +
(
sinn!

)
/n
.

Obviously,

lim bn = 0;

| cosn| ≤ 1⇒ 2cosn ≤ 2;∣∣sinn!∣∣ ≤ 1⇒ lim
n→∞

sinn!

n
= 0⇒ lim

n→∞

(
1 +

sinn!

n

)
= 1.

A sequence
(
cn
)

is therefore bounded and the previous theorem
imply that lim

n→∞
an = 0.
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Theorem 8. If a sequence
(
an
)

is non-decreasing, then its limit
(either proper or improper) exits and is equal to

lim
n→∞

an = sup an .

If a sequence
(
an
)

is non-increasing, then its limit (either proper
or improper) exits and is equal to

lim
n→∞

an = inf an .

Remark: In other words, the theorem says that a monotone sequence
always has a limit (proper or improper), and that this limit is equal
to its supremum (for a non-decreasing sequence) or infimum (for
a non-increasing sequence).
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Proof. Suppose first that a sequence
(
an
)

is non-decreasing,
i.e., an ≤ an+1 for all n ∈ N.

If
(
an
)

is not bounded, than for any K ∈ R there exists n0 such
that an0 > K. Since the sequence is non-decreasing, the inequa-
lity K < an0 ≤ an holds for all n > n0. Thus

lim
n→∞

an = +∞.

If
(
an
)

is bounded from above (notice that it is always bounded
from below), then there exists a finite sup

{
an ; n ∈ N

}
= a ∈ R.

We show that it is also a limit of the sequence
(
an
)
.

A supremum is an upper-bound, thus an ≤ a for all n ∈ N. Con-
sider any ε > 0. Since a supremum is the least upper bound,
there exists n0 ∈ N such that a − ε < an0 ≤ a. Since

(
an
)

is
non-decreasing, the inequality a − ε < an0 ≤ an ≤ a holds for all
n > n0. Thus

lim
n→∞

an = a.
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For a non-increasing sequence, the proof is analogous. �

On the basis of this theorem, the following important relations can
be proved:

lim
n→∞

(
1 +

1

n

)n
= e, more general, lim

n→∞

(
1 +

k

n

)n
= ek

* Example 12. Prove that an =

(
1 +

1

n

)n
is convergent.

Denote bn = (1 + 1/n)n+1. This sequence is decreasing:(
1 +

1

n

)n+1

>

(
1 +

1

n+ 1

)n+2

(
n+ 1

n

)n+1

>

(
n+ 2

n+ 1

)n+2 ∣∣∣∣ ·n+ 1

n(
n+ 1

n

)n+2

>

(
n+ 2

n+ 1

)n+2

· n+ 1

n

∣∣∣∣∣ :
(
n+ 2

n+ 1

)n+2

(
(n+ 1)2

n(n+ 2)

)n+2

> 1 +
1

n
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The last inequality is true, since(
(n+ 1)2

n(n+ 2)

)n+2

=

(
n2 + 2n+ 1

n2 + 2n

)n+2

=

(
1 +

1

n(n+ 2)

)n+2

=

= 1+1 ·(n+2) · 1

n(n+ 2)
+1 ·

(
n+ 2

2

)
·
(

1

n(n+ 2)

)2

+ · · · > 1+
1

n
.

A sequence (bn) is therefore decreasing. Since bn > 0 for all n,
this sequence is bounded from bellow and has a proper limit. Let
us denote this limit by e. Since(

1 +
1

n

)n+1

=

(
1 +

1

n

)n(
1 +

1

n

)
,

the sequence (an) has the same limit, called Euler’s number:

lim
n→∞

(
1 +

1

n

)n
= e = 2,718 281 828 459 045 . . . .
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* Example 13. Prove that

lim
n→∞

(
1 +

k

n

)n
= lim

n→∞

(
1 +

1

n

)kn
= ek .

Similarly as in the previous example, it can be shown that for any
k ∈ N, a sequence an =

(
1+ k/n

)n+k is decreasing and bounded
from bellow, thus its limit exists.

We can select a subsequence
(
bm
)
=
(
akm
)
=
(
1 + 1/m

)km+k.
According to the previous example,

lim
m→∞

(
1 + 1/m

)km+k
=
(
lim
m→∞

(
1 + 1/m

)m)k · lim
m→∞

(
1 + 1/m

)k
= ek.

Since the limit of
(
an
)

exists, it is

lim
n→∞

(
1 +

k

n

)n
= ek.

Calculus 1 c© Magdalena Hyksova, CTU in Prague 32



* Example 14. Find the limit limn→∞

(
1 +

1

3n

)6n+5

.

Solution. Denote an =

(
1 +

1

3n

)6n+5

. Consider a sequence

bm = (1 + 1/m)2m+5. Obviously b3n = an, thus (an) is a sub-
sequence of (bn). It is(

1 +
1

m

)2m+5

=

(
1 +

1

m

)2m

·
(
1 +

1

m

)5

.

Since the limit of the first factor is equal to e2 and the limit of the
second factor is equal to 1,

lim
n→∞

(
1 +

1

3n

)6n+5

= e2 .

Later we will prove: If lim
n→∞

an = 0, lim
n→∞

bn = +∞, then

lim
n→∞

(1 + an)
bn = eα, where α = lim

n→∞
anbn.
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Definition 13. A sequence
(
an
)

is called a Cauchy
sequence , if it satisfies the Bolzano–Cauchy condition:
For any ε > 0 there exist n0 such that

∣∣am − an∣∣ < ε for all
m, n, where m > n0 and n > n0.

Theorem 9. A sequence
(
an
)

is convergent if and only if it is a
Cauchy sequence.

Theorem 10. Let
(
bn
)

be a subsequence of a sequence
(
an
)

with lim
n→∞

an = a. Then lim
n→∞

bn = a.

Proof. For any ε > 0 (orK ∈ R), it is sufficient to choose n0 = kn0.

* Example 15.

Prove that a sequence with an = (−1)n does not have a limit.

Solution. For n = 2k we get a subsequence bk = a2k = (−1)2k =
1 with a limit equal to 1, for n = 2k + 1 we get a subsequence
bk = a2k+1 = (−1)2k+1 = −1 with a limit −1.
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* Example 16.

Prove that a sequence an =

(
1 +

(−1)n

n

)n
does not have a limit.

Solution. For even n = 2k, we get a subsequence

bk = a2k =

(
1 +

1

2k

)2k

.

It is a subsequence of a sequence
(
1 + 1

n

)n, therefore lim
k→∞

bk = e.
For odd n = 2k − 1, we get a subsequence

ck = a2k−1 =

(
1− 1

2k − 1

)2k−1

,

which is a subsequence of a sequence
(
1− 1

n

)n. Since all terms
of this sequence are less than 1, its limit cannot be equal to e > 1.
Actually, lim

k→∞
ck = e−1. Since the sequence

(
an
)

contains two

subsequences with different limits, its limit does not exist.
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Definition 14. A point a ∈ R∗ is called an accumu-
lation point of a sequence

(
an
)

if and only if there exists a
subsequence

(
bn
)

of a sequence
(
an
)

such that a = lim
n→∞

bn.

Theorem 11. A point a is an accumulation point of a sequence(
an
)

if and only if for each Uε(a) there exists an infinite set Na ⊂ N
such that an ∈ Uε(a) for all n ∈ Na.

Proof. The theorem is just a rephrased definition of an accumu-
lation point of a sequence. �

* Example 17.

For a sequence an = (−1)n, accumulation points are 1 and −1,
since

lim
k→∞

a2k = lim
k→∞

1 = 1, lim
k→∞

a2k−1 = lim
k→∞

(−1) = −1.
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* Example 18.

Find all accumulation points of a sequence

an =
(n+ 1)2 + (−1)nn2

n2 + n+ 1
· cos

(
2
3
πn
)
.

Solution. an = bn · cn, where

bn =
(n+ 1)2 + (−1)nn2

n2 + n+ 1
, cn = cos

(
2
3
πn
)
.

Neither of these sequences has a limit.

b2k =
8k2 + 4k + 1

4k2 + 6k + 1
→ 2, b2k−1 =

4k − 1

4k2 − 2k + 1
→ 0 .

Since a sequence cn is bounded, it is lim
k→∞

a2k−1 = 0.
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Consider

a2k =
8k2 + 4k + 1

4k2 + 6k + 1
· cos

(
2
3
πk
)
;

cos
(
4
3
πk
)

is equal to 1 for k = 3m and −1
2

for k = 3m ± 1. A
sequence

(
a2k
)

has therefore a subsequence
(
a6k
)
with a limit 2

and a subsequence
(
a6k±2

)
with a limit −1. Accumulation points

of
(
an
)

are therefore −1, 0 and 2.

* Example 19.

Find all accumulation points of a sequence

1

2
,
1

3
,
2

3
,
1

4
,
2

4
,
3

4
, . . .

1

n
,
2

n
, . . . ,

n− 2

n
,
n− 1

n
, . . . .

Solution. This sequence contains all rational numbers from the
interval (0, 1), i.e., all fractions

p

q
, where 0 < p < q are natu-

ral, mutually prime numbers. Since any real number can be ap-
proximated by a sequence of rational numbers (with an arbitrary
accuracy), the set of accumulation points of a sequence

(
an
)

is
the whole interval 〈0, 1〉.
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Definition 15. Let M be a set of all accumulation points of
a sequence

(
an
)
. The number S = supM is called limes

superior of a sequence
(
an
)

and it is denoted by lim sup
n→∞

an

or lim
n→∞

an. The number s = infM is called limes inferior of

a sequence
(
an
)

and it is denoted by lim inf
n→∞

an or lim
n→∞

an.

* Example 20.

For a sequence an = (−1)n, limes superior and limes inferior are

lim
n→∞

(−1)n = 1, lim
n→∞

(−1)n = −1.

Theorem 12. A sequence
(
an
)

has a limit if and only if

lim sup
n→∞

an = lim inf
n→∞

an .
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Theorem 13. A setM is compact if and only if from each sequence(
an
)
, where an ∈M for all n ∈ N, a subsequence can be selected

such that its limit lies in M .
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