CHAPTER 2

SEQUENCES

Mapping

Definition 1. Consider two non-empty sets A, B. A mapping of a set \mathbf{A} to \mathbf{B} is defined as a set F of ordered pairs $(x, y) \in \mathbf{A} \times \mathbf{B}$, where for every $x \in \mathbf{A}$ there exists exactly one element $y \in \mathbf{B}$ such that $(x, y) \in F$.

An element x is called a preimage of an element y, an element y is called an image of x in the mapping F. We also say that y is the value of the mapping F in a point x and write $y=F(x)$ or $x \mapsto F(x)$. A set \mathbf{A} is called a domain of a mapping F and it is also denoted by a symbol $\mathbf{D}(F)$ or \mathbf{D}_{F}. The set of all images in the mapping F is called range of the mapping F and it is denoted by $\mathbf{H}(F)$ or \mathbf{H}_{F}. It is $\mathbf{H}(F) \subset \mathbf{B}$.

Symbolically, a mapping F from \mathbf{A} to \mathbf{B} is expressed as follows:

$$
F: \mathbf{A} \rightarrow \mathbf{B}, \quad \mathbf{D}(F)=\mathbf{A}
$$

Sequence of real numbers

Definition 2. A sequence $\left(a_{n}\right)$ of real numbers $f: \mathbb{N} \rightarrow \mathbb{R}$, where $a_{n}=f(n)$.

A sequence therefore assigns a unique element $a_{n}=f(n) \in \mathbb{R}$, called term of a sequence, to every $n \in \mathbb{N}$. The whole sequence is usually denoted by $\left(a_{n}\right)$. A graph of a sequence consists of isolated points:

- Example 1.

Arithmetic sequence is defined by a formula:

$$
a_{1} \in \mathbb{R}, \quad a_{n}=a_{1}+(n-1) d,
$$

where a_{1}, d are given real numbers.
Terms of an arithmetic sequence satisfy the condition: $a_{n+1}-$ $a_{n}=d$.
A number d is called difference of an arithmetic sequence.
By mathematical induction it can be proved that the sum of the first n terms of an arithmetic sequence satisfy the equation:

$$
s_{n}=\sum_{k=1}^{n} a_{k}=a_{1}+a_{2}+\cdots+a_{n}=\frac{n\left(a_{1}+a_{n}\right)}{2}=n a_{1}+\frac{n(n-1)}{2} d .
$$

We can also consider:

$$
\begin{gathered}
s_{n}=a_{1}+\left(a_{1}+d\right)+\left(a_{1}+2 d\right)+\cdots+\left(a_{1}+(n-1) d\right) \\
s_{n}=a_{n}+\left(a_{n}-d\right)+\left(a_{n}-2 d\right)+\cdots+\left(a_{n}-(n-1) d\right) \\
\hline 2 s_{n}=\left(a_{1}+a_{n}\right)+\left(a_{1}+a_{n}\right)+\left(a_{1}+a_{n}\right)+\cdots+\left(a_{1}+a_{n}\right) \\
\quad \Longrightarrow 2 s_{n}=n\left(a_{1}+a_{n}\right) \Longrightarrow s_{n}=\frac{1}{2} n\left(a_{1}+a_{n}\right)
\end{gathered}
$$

- Example 2.

Geometric sequence is defined by a formula

$$
a_{1} \in \mathbb{R}, \quad a_{n}=a_{1} q^{n-1}
$$

where a_{1}, q are given real numbers.
If $a_{1} q \neq 0$, the equation

$$
\frac{a_{n+1}}{a_{n}}=q
$$

holds for all $n \in \mathbb{N}$. This ratio is called quotient of a geometric sequence.

By mathematical induction it can be proved that the sum of the first n elements of a geometric sequence satisfy the equation:

$$
s_{n}=\sum_{k=1}^{n} a_{k}=a_{1}\left(1+q+q^{2}+\cdots+q^{n-1}\right)= \begin{cases}a_{1} \frac{q^{n}-1}{q-1} & \text { pro } q \neq 1, \\ n a_{1} & \text { for } q=1 .\end{cases}
$$

Properties of Sequences

Definition 3. A sequence $\left(a_{n}\right)$ is called bounded from above, it there exists $K \in \mathbb{R}$ such that $a_{n} \leq K$ for all $n \in \mathbb{N}$.

Definition 4. A sequence $\left(a_{n}\right)$ is called bounded from below, it there exists $K \in \mathbb{R}$ such that $a_{n} \geq K$ for all $n \in \mathbb{N}$.

Definition 5. A sequence $\left(a_{n}\right)$ is called bounded from above, it there exists $K \in \mathbb{R}$ such that $\left|a_{n}\right| \leq K$ for all $n \in \mathbb{N}$.

- Example 3.

Let $d>0$. An arithmetic sequence $\left(a_{n}\right)$ is bounded from bellow by a_{1}, but it is not bounded from above, and thus it is not bounded.

- Example 4.

Consider a geometric sequence $\left(a_{n}\right)$ with $a_{1} \neq 0$.
If $q<-1$ then it is bounded neither from bellow nor above.
If $|q|=1$ then it is bounded (e.g., consider $K=\left|a_{1}\right|$).
If $q>1$ then it is bounded from below (e.g., $K=\left|a_{1}\right|$).

Definition 6. A sequence $\left(a_{n}\right)$ is called
\Leftrightarrow increasing if $a_{n}<a_{n+1}$ for all $n \in \mathbb{N}$,
\Leftrightarrow decreasing if $a_{n}>a_{n+1}$ for all $n \in \mathbb{N}$,
\Leftrightarrow non-decreasing if $a_{n} \leq a_{n+1}$ for all $n \in \mathbb{N}$,
\Leftrightarrow non-increasing if $a_{n} \geq a_{n+1}$ for all $n \in \mathbb{N}$.

A sequence satisfying one of the above-stated conditions is called monotone. If it is increasing or decreasing, it is also called strictly monotone.

- Example 5.

Consider a sequence $\left(a_{n}\right)$, where $a_{n}=\frac{(-1)^{n+1}}{n}$.
Terms of the sequence: $1,-\frac{1}{2}, \frac{1}{3},-\frac{1}{4}, \frac{1}{5},-\frac{1}{6}, \ldots$. This sequence is not monotone, it is bounded by 1 .

Definition 7. Consider a sequence $\left(a_{n}\right)$ and an increasing sequence of natural numbers $\left(k_{n}\right)$, i.e.,

$$
k_{n} \in \mathbb{N} \quad \text { a } \quad k_{n}<k_{n+1} .
$$

A sequence $\left(b_{n}\right)$, where $b_{n}=a_{k_{n}}$, is called a subsequence of a sequence $\left(a_{n}\right)$.

- Example 6.

A sequence $\left(b_{n}\right)$ defined by the equation

$$
b_{n}=\frac{(-1)^{n^{2}+1}}{n^{2}}
$$

is a subsequence of a sequence $\left(a_{n}\right)$, where

$$
a_{n}=\frac{(-1)^{n+1}}{n}
$$

In this case, $k_{n}=n^{2} \quad\left(b_{1}=1=a_{1} ; b_{2}=-\frac{1}{4}=a_{4} \ldots\right)$.

- Example 7.

A sequence $\left(c_{n}\right)$, where $c_{n}=\frac{1}{n^{2}}$, is not a subsequence of $\left(a_{n}\right)$, where

$$
a_{n}=\frac{(-1)^{n+1}}{n}
$$

since no increasing sequence of natural numbers $\left(k_{n}\right)$ exists such that $a_{k_{n}}=c_{n}=\frac{1}{n^{2}} \quad\left(c_{1}=1=a_{1} ; c_{2}=\frac{1}{4}, a_{4}=-\frac{1}{4}\right)$.

- Example 8.

A sequence $\left(d_{n}\right)$ with terms

$$
1,-\frac{1}{2}, \frac{1}{3}, \frac{1}{5},-\frac{1}{4}, \frac{1}{7}, \frac{1}{9},-\frac{1}{6}, \frac{1}{11}, \ldots
$$

is not selected from a sequence $\left(a_{n}\right)$, even though the sets of terms of both sequences are equal.

Algebraic operations

Multiplication of a sequence $\left(a_{n}\right)$ by a real number $c \in \mathbb{R}$:

$$
c\left(a_{n}\right)=\left(c a_{n}\right)
$$

A sum of sequences $\left(a_{n}\right)$ and $\left(b_{n}\right)$:

$$
\left(a_{n}\right)+\left(b_{n}\right)=\left(a_{n}+b_{n}\right) .
$$

A difference of sequences $\left(a_{n}\right)$ and $\left(b_{n}\right)$:

$$
\left(a_{n}\right) \cdot\left(b_{n}\right)=\left(a_{n} \cdot b_{n}\right) .
$$

A quotient of sequences $\left(a_{n}\right),\left(b_{n}\right)$, where $b_{n} \neq 0$ for all $n \in \mathbb{N}$:

$$
\frac{\left(a_{n}\right)}{\left(b_{n}\right)}=\left(\frac{a_{n}}{b_{n}}\right)
$$

Limit of a sequence

Definition 8. We say that a sequence $\left(a_{n}\right)$ has a limit $a \in \mathbb{R}^{*}$, if for every $\varepsilon>0$ there exists $n_{0} \in \mathbb{N}$ such that $a_{n} \in U_{\varepsilon}(a)$ for all $n>n_{0}$.
We write $\lim _{n \rightarrow \infty} a_{n}=a$ or simply $\lim a_{n}=a$.

Notice that for $a \in \mathbb{R}, a_{n} \in U_{\varepsilon}(a)$ means that $\left|a_{n}-a\right|<\varepsilon$. In this case, we speak about a proper limit.

A proper limit can also be defined separately as follows.

Definition 9. We say that a sequence $\left(a_{n}\right)$ has a proper limit $a \in \mathbb{R}$, if for every $\varepsilon>0$ there exists $n_{0} \in \mathbb{N}$ such that $\left|a_{n}-a\right|<\varepsilon$ for all $n>n_{0}$.

- Example 9.

Prove that $\lim _{n \rightarrow \infty} \frac{n+4}{n^{3}+n+1}=0$.
Solution. Let $\varepsilon>0$ is given. An inequality

$$
\frac{n+4}{n^{3}+n+1}<\frac{5 n^{2}}{n^{3}}=\frac{5}{n}
$$

implies that for $n_{0} \in \mathbb{N}$ such that $\frac{5}{n_{0}}<\varepsilon$, the following equation holds for all $n \in \mathbb{N}, n>n_{0}$:

$$
\left|\frac{n+4}{n^{3}+n+1}-0\right|=\frac{n+4}{n^{3}+n+1}<\frac{5}{n}<\frac{5}{n_{0}}<\varepsilon .
$$

It is sufficient to consider $n_{0}=\left[\begin{array}{l}5 \\ \varepsilon\end{array}\right]+1$, where $[x]$ is a so-called whole part of a real number x, which is defined for any $x \in \mathbb{R}$ as a unique integer satisfying the inequalities $[x] \leq x<[x]+1$.

If a limit a is infinite, it is called improper.
In this case, $a_{n} \in U_{\varepsilon}(+\infty)$ means that $a_{n}>1 / \varepsilon$ and $a_{n} \in U_{\varepsilon}(-\infty)$ means that $a_{n}<-1 / \varepsilon$. It can also be defined separately:

Definition 10. We say that a sequence $\left(a_{n}\right)$ has an improper limit $+\infty$, if for every $K \in \mathbb{R}$ there exists n_{0} such that $a_{n}>K$ for all $n>n_{0}$.

Definition 11. We say that a sequence $\left(a_{n}\right)$ has an improper limit $-\infty$, if for every $K \in \mathbb{R}$ there exists n_{0} such that $a_{n}<K$ for all $n>n_{0}$.

Theorem 1. Every sequence has at most one limit.

Proof. By contradiction:
If $\left(a_{n}\right)$ had two different limits a and $b, a \neq b$, it would be possible to choose disjoint neighbourhoods of these points, $U_{\varepsilon_{1}}(a)$ and $U_{\varepsilon_{2}}(b)$ with $U_{\varepsilon_{1}}(a) \cap U_{\varepsilon_{2}}(b)=\emptyset$.
For finite $a, b \in \mathbb{R}$ we can consider e.g. $\varepsilon_{1}=\varepsilon_{2}=\frac{|a-b|}{3}>0$.
From definition of a limit: there exists $n_{1} \in \mathbb{N}$ such that $a_{n} \in U_{\varepsilon_{1}}(a)$ for all $n>n_{1}$, and n_{2} such that $a_{n} \in U_{\varepsilon_{2}}(a)$ for all $n>n_{2}$.

But then $a_{n} \in U_{\varepsilon_{1}}(a) \cap U_{\varepsilon_{2}}(b)=\emptyset$ for all $n>\max \left(n_{1}, n_{2}\right)$.
The assumption that a is different from b therefore leads to a contradiction, thus it must be $a=b$. \square

Definition 12. If a sequence $\left(a_{n}\right)$ has a proper limit, it is called convergent. Otherwise (i.e., its limit is improper or does not exist) it is called divergent.

Theorem 2. Every convergent sequence is bounded.

Proof. Let $\lim _{n \rightarrow \infty} a_{n}=a \in \mathbb{R}$. Let us choose $\varepsilon=1$. Then there exists $n_{0} \in \mathbb{N}$ such that $a-1<a_{n}<a+1$ for all $n>n_{0}$. Denote
$K=\max \left\{a_{1}, a_{2}, \ldots, a_{n_{0}}, a+1\right\}, L=\min \left\{a_{1}, a_{2}, \ldots, a_{n_{0}}, a-1\right\}$.
These values K and L exist, since they represent maximum and minimum of a finite set, respectively, and the inequality $L \leq a_{n} \leq$ K holds for all $n \in \mathbb{N}$. \square

Theorem 3. Let $\left(a_{n}\right)$ and $\left(b_{n}\right)$ be convergent sequences, $c \in \mathbb{R}$. Let $\lim _{n \rightarrow \infty} a_{n}=a, \lim _{n \rightarrow \infty} b_{n}=b$.

Then the sequences

$$
\left(c a_{n}\right),\left(a_{n}+b_{n}\right),\left(a_{n} \cdot b_{n}\right)
$$

converge, too, and the following equations hold:

$$
\lim _{n \rightarrow \infty}\left(c a_{n}\right)=c a, \quad\left(a_{n}+b_{n}\right)=a+b, \quad \lim _{n \rightarrow \infty}\left(a_{n} \cdot b_{n}\right)=a b
$$

If $\lim _{n \rightarrow \infty} b_{n} \neq 0$, then the sequence $\left(\frac{a_{n}}{b_{n}}\right)$ convergs to the limit

$$
\lim _{n \rightarrow \infty}\left(\frac{a_{n}}{b_{n}}\right)=\frac{a}{b}
$$

Theorem 4. Let $\left(a_{n}\right)$ and $\left(b_{n}\right)$ be convergent sequences such that $a_{n} \leq b_{n}$ for all $n \in \mathbb{N}$, then $\lim _{n \rightarrow \infty} a_{n} \leq \lim _{n \rightarrow \infty} b_{n}$.

Proof. Denote $\lim _{n \rightarrow \infty} a_{n}=a, \lim _{n \rightarrow \infty} b_{n}=b$.
If $a>b$, then for $\varepsilon=\frac{a-b}{2}>0$ there exist n_{a}, n_{b} such that $a-\varepsilon=\frac{a+b}{2}<a_{n}$ for all $n>n_{a}$ and $b_{n}<b+\varepsilon=\frac{a+b}{2}$ for all $n>n_{b}$. Thus $b_{n}<\frac{a+b}{2}<a_{n}$ for all $n>\max \left(n_{a}, n_{b}\right)$, which is a contradiction. \square

Remark: The limits a and b can be equal, $a=b$, even if $a_{n}<b_{n}$ for all $n \in \mathbb{N}$. For example: $a_{n}=0, b_{n}=\frac{1}{n}$.

Theorem 5. Let sequences $\left(a_{n}\right),\left(b_{n}\right),\left(c_{n}\right)$ be such that $a_{n} \leq$ $b_{n} \leq c_{n}$ for all $n \in \mathbb{N}$. If limits of $\left(a_{n}\right)$ and $\left(c_{n}\right)$ exist and are equal, i.e., $\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} c_{n}=a$, then the limit of a sequence $\left(b_{n}\right)$ exists, too, and is equal to $\lim _{n \rightarrow \infty} b_{n}=a$.

Proof. The assumption is obvious for $\lim _{n \rightarrow \infty} a_{n}=+\infty$ or $\lim _{n \rightarrow \infty} c_{n}=$ $-\infty$. Let $a \in \mathbb{R}$. Then for each $\varepsilon>0$ there exist n_{a}, n_{c} such that $a-\varepsilon<a_{n}$ for all $n>n_{a}$ and $c_{n}<a+\varepsilon$ for all $n>n_{b}$. Thus $a-\varepsilon<a_{n} \leq b_{n} \leq c_{n}<a+\varepsilon$ for all $n>n_{0}=\max \left(n_{a}, n_{b}\right) . \square$

Theorem 6. For any sequence $\left(a_{n}\right), \lim _{n \rightarrow \infty} a_{n}=0$ if and only if $\lim _{n \rightarrow \infty}\left|a_{n}\right|=0$.

Proof. The proposition follows directly from the definition of a limit. \square

Theorem 7. If $\lim _{n \rightarrow \infty} a_{n}=0$ and a sequence $\left(b_{n}\right)$ is bounded, then $\lim _{n \rightarrow \infty} a_{n} b_{n}=0$.

Proof. Since $\lim _{n \rightarrow \infty} a_{n}=0$, it is also $\lim _{n \rightarrow \infty}\left|a_{n}\right|=0$. Since a sequence $\left(b_{n}\right)$ is bounded, there exists $K \in \mathbb{R}$ such that $-K \leq b_{n} \leq K$ for all $n \in \mathbb{N}$. Obviously, $-K\left|a_{n}\right| \leq\left|a_{n} b_{n}\right| \leq K\left|a_{n}\right|, \lim _{n \rightarrow \infty} K\left|a_{n}\right|=0$.

- Example 10.

Find the limit of a sequence $a_{n}=\frac{\sin n!}{n}$.
Solution: Denote

$$
a_{n}=b_{n} \cdot c_{n}, \text { where } b_{n}=\frac{1}{n}, c_{n}=\sin n!
$$

Obviously,
$\lim b_{n}=0$;
$|\sin n!| \leq 1$.
A sequence $\left(c_{n}\right)$ is therefore bounded and the previous theorem imply that $\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} b_{n} c_{n}=0$, i.e.,

$$
\lim _{n \rightarrow \infty} \frac{\sin n!}{n}=0 .
$$

- Example 11.

Find the limit of a sequence $a_{n}=\frac{2^{\cos n}}{n+\sin n!}$.
Solution: Denote

$$
a_{n}=b_{n} \cdot c_{n}, \text { where } b_{n}=\frac{1}{n}, c_{n}=\frac{2^{\cos n}}{1+(\sin n!) / n} .
$$

Obviously,
$\lim b_{n}=0 ;$
$|\cos n| \leq 1 \Rightarrow 2^{\cos n} \leq 2 ;$
$|\sin n!| \leq 1 \Rightarrow \lim _{n \rightarrow \infty} \frac{\sin n!}{n}=0 \Rightarrow \lim _{n \rightarrow \infty}\left(1+\frac{\sin n!}{n}\right)=1$.
A sequence $\left(c_{n}\right)$ is therefore bounded and the previous theorem imply that $\lim _{n \rightarrow \infty} a_{n}=0$.

Theorem 8. If a sequence $\left(a_{n}\right)$ is non-decreasing, then its limit (either proper or improper) exits and is equal to

$$
\lim _{n \rightarrow \infty} a_{n}=\sup a_{n}
$$

If a sequence $\left(a_{n}\right)$ is non-increasing, then its limit (either proper or improper) exits and is equal to

$$
\lim _{n \rightarrow \infty} a_{n}=\inf a_{n}
$$

Remark: In other words, the theorem says that a monotone sequence always has a limit (proper or improper), and that this limit is equal to its supremum (for a non-decreasing sequence) or infimum (for a non-increasing sequence).

Proof. Suppose first that a sequence $\left(a_{n}\right)$ is non-decreasing, i.e., $a_{n} \leq a_{n+1}$ for all $n \in \mathbb{N}$.

If $\left(a_{n}\right)$ is not bounded, than for any $K \in \mathbb{R}$ there exists n_{0} such that $a_{n_{0}}>K$. Since the sequence is non-decreasing, the inequality $K<a_{n_{0}} \leq a_{n}$ holds for all $n>n_{0}$. Thus

$$
\lim _{n \rightarrow \infty} a_{n}=+\infty
$$

If $\left(a_{n}\right)$ is bounded from above (notice that it is always bounded from below), then there exists a finite $\sup \left\{a_{n} ; n \in \mathbb{N}\right\}=a \in \mathbb{R}$. We show that it is also a limit of the sequence $\left(a_{n}\right)$.
A supremum is an upper-bound, thus $a_{n} \leq a$ for all $n \in \mathbb{N}$. Consider any $\varepsilon>0$. Since a supremum is the least upper bound, there exists $n_{0} \in \mathbb{N}$ such that $a-\varepsilon<a_{n_{0}} \leq a$. Since $\left(a_{n}\right)$ is non-decreasing, the inequality $a-\varepsilon<a_{n_{0}} \leq a_{n} \leq a$ holds for all $n>n_{0}$. Thus

$$
\lim _{n \rightarrow \infty} a_{n}=a
$$

For a non-increasing sequence, the proof is analogous. \square

On the basis of this theorem, the following important relations can be proved:

$$
\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}=\mathrm{e}, \quad \text { more general, } \quad \lim _{n \rightarrow \infty}\left(1+\frac{k}{n}\right)^{n}=\mathrm{e}^{k}
$$

- Example 12. Prove that $a_{n}=\left(1+\frac{1}{n}\right)^{n}$ is convergent. Denote $b_{n}=(1+1 / n)^{n+1}$. This sequence is decreasing:

$$
\begin{aligned}
\left(1+\frac{1}{n}\right)^{n+1} & >\left(1+\frac{1}{n+1}\right)^{n+2} \\
\left(\frac{n+1}{n}\right)^{n+1} & \left.>\left(\frac{n+2}{n+1}\right)^{n+2} \right\rvert\, \cdot \frac{n+1}{n} \\
\left(\frac{n+1}{n}\right)^{n+2} & \left.>\left(\frac{n+2}{n+1}\right)^{n+2} \cdot \frac{n+1}{n} \right\rvert\,:\left(\frac{n+2}{n+1}\right)^{n+2} \\
\left(\frac{(n+1)^{2}}{n(n+2)}\right)^{n+2} & >1+\frac{1}{n}
\end{aligned}
$$

The last inequality is true, since

$$
\begin{aligned}
& \left(\frac{(n+1)^{2}}{n(n+2)}\right)^{n+2}=\left(\frac{n^{2}+2 n+1}{n^{2}+2 n}\right)^{n+2}=\left(1+\frac{1}{n(n+2)}\right)^{n+2}= \\
= & 1+1 \cdot(n+2) \cdot \frac{1}{n(n+2)}+1 \cdot\binom{n+2}{2} \cdot\left(\frac{1}{n(n+2)}\right)^{2}+\cdots>1+\frac{1}{n} .
\end{aligned}
$$

A sequence $\left(b_{n}\right)$ is therefore decreasing. Since $b_{n}>0$ for all n, this sequence is bounded from bellow and has a proper limit. Let us denote this limit by e. Since

$$
\left(1+\frac{1}{n}\right)^{n+1}=\left(1+\frac{1}{n}\right)^{n}\left(1+\frac{1}{n}\right)
$$

the sequence $\left(a_{n}\right)$ has the same limit, called Euler's number:

$$
\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}=e=2,718281828459045 \ldots
$$

- Example 13. Prove that

$$
\lim _{n \rightarrow \infty}\left(1+\frac{k}{n}\right)^{n}=\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{k n}=e^{k}
$$

Similarly as in the previous example, it can be shown that for any $k \in \mathbb{N}$, a sequence $a_{n}=(1+k / n)^{n+k}$ is decreasing and bounded from bellow, thus its limit exists.
We can select a subsequence $\left(b_{m}\right)=\left(a_{k m}\right)=(1+1 / m)^{k m+k}$. According to the previous example,

$$
\lim _{m \rightarrow \infty}(1+1 / m)^{k m+k}=\left(\lim _{m \rightarrow \infty}(1+1 / m)^{m}\right)^{k} \cdot \lim _{m \rightarrow \infty}(1+1 / m)^{k}=e^{k} .
$$

Since the limit of $\left(a_{n}\right)$ exists, it is

$$
\lim _{n \rightarrow \infty}\left(1+\frac{k}{n}\right)^{n}=e^{k}
$$

- Example 14. Find the limit $\lim _{n \rightarrow \infty}\left(1+\frac{1}{3 n}\right)^{6 n+5}$.

Solution. Denote $a_{n}=\left(1+\frac{1}{3 n}\right)^{6 n+5}$. Consider a sequence $b_{m}=(1+1 / m)^{2 m+5}$. Obviously $b_{3 n}=a_{n}$, thus $\left(a_{n}\right)$ is a subsequence of $\left(b_{n}\right)$. It is

$$
\left(1+\frac{1}{m}\right)^{2 m+5}=\left(1+\frac{1}{m}\right)^{2 m} \cdot\left(1+\frac{1}{m}\right)^{5}
$$

Since the limit of the first factor is equal to e^{2} and the limit of the second factor is equal to 1 ,

$$
\lim _{n \rightarrow \infty}\left(1+\frac{1}{3 n}\right)^{6 n+5}=e^{2}
$$

Later we will prove: If $\lim _{n \rightarrow \infty} a_{n}=0, \lim _{n \rightarrow \infty} b_{n}=+\infty$, then

$$
\lim _{n \rightarrow \infty}\left(1+a_{n}\right)^{b_{n}}=e^{\alpha}, \text { where } \alpha=\lim _{n \rightarrow \infty} a_{n} b_{n} .
$$

Definition 13. A sequence $\left(a_{n}\right)$ is called a Cauchy sequence, if it satisfies the Bolzano-Cauchy condition:
For any $\varepsilon>0$ there exist n_{0} such that $\left|a_{m}-a_{n}\right|<\varepsilon$ for all m, n, where $m>n_{0}$ and $n>n_{0}$.

Theorem 9. A sequence $\left(a_{n}\right)$ is convergent if and only if it is a Cauchy sequence.

Theorem 10. Let $\left(b_{n}\right)$ be a subsequence of a sequence $\left(a_{n}\right)$ with $\lim _{n \rightarrow \infty} a_{n}=a$. Then $\lim _{n \rightarrow \infty} b_{n}=a$.
Proof. For any $\varepsilon>0$ (or $K \in \mathbb{R}$), it is sufficient to choose $n_{0}=k_{n_{0}}$.

- Example 15.

Prove that a sequence with $a_{n}=(-1)^{n}$ does not have a limit.
Solution. For $n=2 k$ we get a subsequence $b_{k}=a_{2 k}=(-1)^{2 k}=$ 1 with a limit equal to 1 , for $n=2 k+1$ we get a subsequence $b_{k}=a_{2 k+1}=(-1)^{2 k+1}=-1$ with a limit -1.

- Example 16.

Prove that a sequence $a_{n}=\left(1+\frac{(-1)^{n}}{n}\right)^{n}$ does not have a limit.

Solution. For even $n=2 k$, we get a subsequence

$$
b_{k}=a_{2 k}=\left(1+\frac{1}{2 k}\right)^{2 k} .
$$

It is a subsequence of a sequence $\left(1+\frac{1}{n}\right)^{n}$, therefore $\lim _{k \rightarrow \infty} b_{k}=e$.
For odd $n=2 k-1$, we get a subsequence

$$
c_{k}=a_{2 k-1}=\left(1-\frac{1}{2 k-1}\right)^{2 k-1}
$$

which is a subsequence of a sequence $\left(1-\frac{1}{n}\right)^{n}$. Since all terms of this sequence are less than 1, its limit cannot be equal to $e>1$. Actually, $\lim _{k \rightarrow \infty} c_{k}=e^{-1}$. Since the sequence $\left(a_{n}\right)$ contains two subsequences with different limits, its limit does not exist.

Definition 14. A point $a \in \mathbb{R}^{*}$ is called an accumulation point of a sequence $\left(a_{n}\right)$ if and only if there exists a subsequence $\left(b_{n}\right)$ of a sequence $\left(a_{n}\right)$ such that $a=\lim _{n \rightarrow \infty} b_{n}$.

Theorem 11. A point a is an accumulation point of a sequence $\left(a_{n}\right)$ if and only if for each $U_{\varepsilon}(a)$ there exists an infinite set $N_{a} \subset \mathbb{N}$ such that $a_{n} \in U_{\varepsilon}(a)$ for all $n \in N_{a}$.

Proof. The theorem is just a rephrased definition of an accumulation point of a sequence. \square

- Example 17.

For a sequence $a_{n}=(-1)^{n}$, accumulation points are 1 and -1 , since

$$
\lim _{k \rightarrow \infty} a_{2 k}=\lim _{k \rightarrow \infty} 1=1, \quad \lim _{k \rightarrow \infty} a_{2 k-1}=\lim _{k \rightarrow \infty}(-1)=-1
$$

- Example 18.

Find all accumulation points of a sequence

$$
a_{n}=\frac{(n+1)^{2}+(-1)^{n} n^{2}}{n^{2}+n+1} \cdot \cos \left(\frac{2}{3} \pi n\right)
$$

Solution. $a_{n}=b_{n} \cdot c_{n}$, where

$$
b_{n}=\frac{(n+1)^{2}+(-1)^{n} n^{2}}{n^{2}+n+1}, \quad c_{n}=\cos \left(\frac{2}{3} \pi n\right)
$$

Neither of these sequences has a limit.

$$
b_{2 k}=\frac{8 k^{2}+4 k+1}{4 k^{2}+6 k+1} \rightarrow 2, \quad b_{2 k-1}=\frac{4 k-1}{4 k^{2}-2 k+1} \rightarrow 0 .
$$

Since a sequence c_{n} is bounded, it is $\lim _{k \rightarrow \infty} a_{2 k-1}=0$.

Consider

$$
a_{2 k}=\frac{8 k^{2}+4 k+1}{4 k^{2}+6 k+1} \cdot \cos \left(\frac{2}{3} \pi k\right) ;
$$

$\cos \left(\frac{4}{3} \pi k\right)$ is equal to 1 for $k=3 m$ and $-\frac{1}{2}$ for $k=3 m \pm 1$. A sequence $\left(a_{2 k}\right)$ has therefore a subsequence $\left(a_{6 k}\right)$ with a limit 2 and a subsequence $\left(a_{6 k \pm 2}\right)$ with a limit -1 . Accumulation points of $\left(a_{n}\right)$ are therefore $-1,0$ and 2 .

- Example 19.

Find all accumulation points of a sequence

$$
\frac{1}{2}, \frac{1}{3}, \frac{2}{3}, \frac{1}{4}, \frac{2}{4}, \frac{3}{4}, \ldots \frac{1}{n}, \frac{2}{n}, \ldots, \frac{n-2}{n}, \frac{n-1}{n}, \ldots
$$

Solution. This sequence contains all rational numbers from the interval $(0,1)$, i.e., all fractions $\frac{p}{q}$, where $0<p<q$ are natural, mutually prime numbers. Since any real number can be approximated by a sequence of rational numbers (with an arbitrary accuracy), the set of accumulation points of a sequence $\left(a_{n}\right)$ is the whole interval $\langle 0,1\rangle$.

Definition 15. Let M be a set of all accumulation points of a sequence $\left(a_{n}\right)$. The number $S=\sup M$ is called limes superior of a sequence $\left(a_{n}\right)$ and it is denoted by $\lim \sup a_{n}$ $n \rightarrow \infty$
or $\varlimsup_{n \rightarrow \infty} a_{n}$. The number $s=\inf M$ is called limes inferior of a sequence $\left(a_{n}\right)$ and it is denoted by $\liminf _{n \rightarrow \infty} a_{n}$ or $\underline{\underline{l i m}}_{n \rightarrow \infty} a_{n}$.

- Example 20.

For a sequence $a_{n}=(-1)^{n}$, limes superior and limes inferior are

$$
\varlimsup_{n \rightarrow \infty}(-1)^{n}=1, \quad \underline{\lim }_{n \rightarrow \infty}(-1)^{n}=-1
$$

Theorem 12. A sequence $\left(a_{n}\right)$ has a limit if and only if

$$
\limsup _{n \rightarrow \infty} a_{n}=\liminf _{n \rightarrow \infty} a_{n}
$$

Theorem 13. A set M is compact if and only if from each sequence $\left(a_{n}\right)$, where $a_{n} \in M$ for all $n \in \mathbb{N}$, a subsequence can be selected such that its limit lies in M.

