CHAPTER 2

SEQUENCES

Mapping

Definition 1. Consider two non-empty sets A, B. **A mapping of a set A to B** is defined as a set F of ordered pairs $(x, y) \in \mathbf{A} \times \mathbf{B}$, where for every $x \in \mathbf{A}$ there exists **exactly one** element $y \in \mathbf{B}$ such that $(x, y) \in F$.

An element x is called a **preimage** of an element y, an element y is called an **image** of x in the mapping F. We also say that y is the **value** of the mapping F in a point x and write y = F(x) or $x \mapsto F(x)$. A set **A** is called a **domain** of a mapping F and it is also denoted by a symbol D(F) or D_F . The set of all images in the mapping F is called **range** of the mapping F and it is denoted by H(F) or H_F . It is $H(F) \subset B$.

Symbolically, a mapping *F* from **A** to **B** is expressed as follows:

$$F: \mathbf{A} \to \mathbf{B}, \quad \mathbf{D}(F) = \mathbf{A}$$

Sequence of real numbers

Definition 2. A sequence (a_n) of real numbers $f : \mathbb{N} \to \mathbb{R}$, where $a_n = f(n)$.

A sequence therefore assigns a unique element $a_n = f(n) \in \mathbb{R}$, called **term of a sequence**, to every $n \in \mathbb{N}$. The whole sequence is usually denoted by (a_n) . A graph of a sequence consists of isolated points:

Arithmetic sequence is defined by a formula:

$$a_1 \in \mathbb{R}$$
, $a_n = a_1 + (n-1)d$,

where a_1, d are given real numbers.

Terms of an arithmetic sequence satisfy the condition: $a_{n+1} - a_n = d$.

A number *d* is called **difference of an arithmetic sequence**.

By mathematical induction it can be proved that the sum of the first n terms of an arithmetic sequence satisfy the equation:

$$s_n = \sum_{k=1}^n a_k = a_1 + a_2 + \dots + a_n = \frac{n(a_1 + a_n)}{2} = na_1 + \frac{n(n-1)}{2} d.$$

We can also consider:

$$s_n = a_1 + (a_1 + d) + (a_1 + 2d) + \dots + (a_1 + (n - 1)d)$$

$$s_n = a_n + (a_n - d) + (a_n - 2d) + \dots + (a_n - (n - 1)d)$$

$$2s_n = (a_1 + a_n) + (a_1 + a_n) + (a_1 + a_n) + \dots + (a_1 + a_n)$$

$$\implies 2s_n = n(a_1 + a_n) \implies s_n = \frac{1}{2}n(a_1 + a_n)$$

Example 2.

Geometric sequence is defined by a formula

$$a_1 \in \mathbb{R}, \qquad a_n = a_1 q^{n-1},$$

where a_1, q are given real numbers.

If $a_1q \neq 0$, the equation

$$\frac{a_{n+1}}{a_n} = q \,.$$

holds for all $n \in \mathbb{N}$. This ratio is called **quotient of a geometric** sequence.

By mathematical induction it can be proved that the sum of the first n elements of a geometric sequence satisfy the equation:

$$s_n = \sum_{k=1}^n a_k = a_1 \left(1 + q + q^2 + \dots + q^{n-1} \right) = \begin{cases} a_1 \frac{q^n - 1}{q - 1} & \text{pro } q \neq 1, \\ \\ na_1 & \text{for } q = 1. \end{cases}$$

Properties of Sequences

Definition 3. A sequence (a_n) is called **bounded from above**, it there exists $K \in \mathbb{R}$ such that $a_n \leq K$ for all $n \in \mathbb{N}$.

Definition 4. A sequence (a_n) is called **bounded from** below, it there exists $K \in \mathbb{R}$ such that $a_n \geq K$ for all $n \in \mathbb{N}$.

Definition 5. A sequence (a_n) is called **bounded from above**, it there exists $K \in \mathbb{R}$ such that $|a_n| \leq K$ for all $n \in \mathbb{N}$.

🖝 Example 3.

Let d > 0. An arithmetic sequence (a_n) is bounded from bellow by a_1 , but it is not bounded from above, and thus it is not bounded.

Example 4.

Consider a geometric sequence (a_n) with $a_1 \neq 0$.

If q < -1 then it is bounded neither from bellow nor above.

If |q| = 1 then it is bounded (e.g., consider $K = |a_1|$).

If q > 1 then it is bounded from below (e.g., $K = |a_1|$).

Definition 6. A sequence (a_n) is called

- ➡ increasing if $a_n < a_{n+1}$ for all $n \in \mathbb{N}$,
- \blacktriangleright decreasing if $a_n > a_{n+1}$ for all $n \in \mathbb{N}$,
- ▶ non-decreasing if $a_n \leq a_{n+1}$ for all $n \in \mathbb{N}$,
- ▶ non-increasing if $a_n \ge a_{n+1}$ for all $n \in \mathbb{N}$.

A sequence satisfying one of the above-stated conditions is called **monotone**. If it is increasing or decreasing, it is also called **strictly monotone**.

• Example 5.

Consider a sequence (a_n) , where $a_n = \frac{(-1)^{n+1}}{n}$. Terms of the sequence: $1, -\frac{1}{2}, \frac{1}{3}, -\frac{1}{4}, \frac{1}{5}, -\frac{1}{6}, \dots$. This sequence is not monotone, it is bounded by 1. **Definition 7.** Consider a sequence (a_n) and an increasing sequence of natural numbers (k_n) , i.e.,

$$k_n \in \mathbb{N}$$
 a $k_n < k_{n+1}$.

A sequence (b_n) , where $b_n = a_{k_n}$, is called a **subsequence** of a sequence (a_n) .

• Example 6.

A sequence (b_n) defined by the equation

$$b_n = \frac{(-1)^{n^2 + 1}}{n^2}$$

is a subsequence of a sequence (a_n) , where

$$a_n = \frac{(-1)^{n+1}}{n}$$

In this case, $k_n = n^2$ $(b_1 = 1 = a_1; b_2 = -\frac{1}{4} = a_4 \dots)$.

• Example 7.

A sequence (c_n) , where $c_n = \frac{1}{n^2}$, is not a subsequence of (a_n) , where

$$a_n = \frac{(-1)^{n+1}}{n} \,,$$

since no increasing sequence of natural numbers (k_n) exists such that $a_{k_n} = c_n = \frac{1}{n^2}$ $(c_1 = 1 = a_1; c_2 = \frac{1}{4}, a_4 = -\frac{1}{4}).$

• Example 8.

A sequence (d_n) with terms

$$1, -\frac{1}{2}, \frac{1}{3}, \frac{1}{5}, -\frac{1}{4}, \frac{1}{7}, \frac{1}{9}, -\frac{1}{6}, \frac{1}{11}, \dots$$

is not selected from a sequence (a_n) , even though the sets of terms of both sequences are equal.

Algebraic operations

Multiplication of a sequence (a_n) by a real number $c \in \mathbb{R}$:

 $c(a_n) = (ca_n).$

A sum of sequences (a_n) and (b_n) :

$$(a_n) + (b_n) = (a_n + b_n).$$

A difference of sequences (a_n) and (b_n) :

$$(a_n) \cdot (b_n) = (a_n \cdot b_n).$$

A quotient of sequences $(a_n), (b_n)$, where $b_n \neq 0$ for all $n \in \mathbb{N}$:

$$\frac{(a_n)}{(b_n)} = \left(\frac{a_n}{b_n}\right) \,.$$

Limit of a sequence

Definition 8. We say that a sequence (a_n) has a limit $a \in \mathbb{R}^*$, if for every $\varepsilon > 0$ there exists $n_0 \in \mathbb{N}$ such that $a_n \in U_{\varepsilon}(a)$ for all $n > n_0$. We write $\lim_{n \to \infty} a_n = a$ or simply $\lim a_n = a$.

Notice that for $a \in \mathbb{R}$, $a_n \in U_{\varepsilon}(a)$ means that $|a_n - a| < \varepsilon$. In this case, we speak about a **proper limit.**

Calculus 1 © Magdalena Hyksova, CTU in Prague

A proper limit can also be defined separately as follows.

Definition 9. We say that a sequence (a_n) has a **proper limit** $a \in \mathbb{R}$, if for every $\varepsilon > 0$ there exists $n_0 \in \mathbb{N}$ such that $|a_n - a| < \varepsilon$ for all $n > n_0$.

Example 9.

Prove that
$$\lim_{n \to \infty} \frac{n+4}{n^3 + n + 1} = 0.$$

Solution. Let $\varepsilon > 0$ is given. An inequality

$$\frac{n+4}{n^3+n+1} < \frac{5n^2}{n^3} = \frac{5}{n}$$

implies that for $n_0 \in \mathbb{N}$ such that $\frac{5}{n_0} < \varepsilon$, the following equation holds for all $n \in \mathbb{N}$, $n > n_0$:

$$\left|\frac{n+4}{n^3+n+1} - 0\right| = \frac{n+4}{n^3+n+1} < \frac{5}{n} < \frac{5}{n_0} < \varepsilon$$

It is sufficient to consider $n_0 = \left[\frac{5}{\varepsilon}\right] + 1$, where [x] is a so-called whole part of a real number x, which is defined for any $x \in \mathbb{R}$ as a unique integer satisfying the inequalities $[x] \le x < [x] + 1$.

If a limit *a* is infinite, it is called **improper**. In this case, $a_n \in U_{\varepsilon}(+\infty)$ means that $a_n > 1/\varepsilon$ and $a_n \in U_{\varepsilon}(-\infty)$ means that $a_n < -1/\varepsilon$. It can also be defined separately:

Definition 10. We say that a sequence (a_n) has an **improper limit** $+\infty$, if for every $K \in \mathbb{R}$ there exists n_0 such that $a_n > K$ for all $n > n_0$.

Calculus 1 © Magdalena Hyksova, CTU in Prague

Definition 11. We say that a sequence (a_n) has an **improper limit** $-\infty$, if for every $K \in \mathbb{R}$ there exists n_0 such that $a_n < K$ for all $n > n_0$.

Theorem 1. Every sequence has at most one limit.

Proof. By contradiction:

If (a_n) had two different limits a and b, $a \neq b$, it would be possible to choose disjoint neighbourhoods of these points, $U_{\varepsilon_1}(a)$ and $U_{\varepsilon_2}(b)$ with $U_{\varepsilon_1}(a) \cap U_{\varepsilon_2}(b) = \emptyset$.

For finite $a, b \in \mathbb{R}$ we can consider e.g. $\varepsilon_1 = \varepsilon_2 = \frac{|a-b|}{3} > 0$.

From definition of a limit: there exists $n_1 \in \mathbb{N}$ such that $a_n \in U_{\varepsilon_1}(a)$ for all $n > n_1$, and n_2 such that $a_n \in U_{\varepsilon_2}(a)$ for all $n > n_2$.

But then $a_n \in U_{\varepsilon_1}(a) \cap U_{\varepsilon_2}(b) = \emptyset$ for all $n > \max(n_1, n_2)$.

The assumption that *a* is different from *b* therefore leads to a contradiction, thus it must be a = b. \Box

Definition 12. If a sequence (a_n) has a proper limit, it is called **convergent**. Otherwise (i.e., its limit is improper or does not exist) it is called **divergent**.

Theorem 2. Every convergent sequence is bounded.

Proof. Let $\lim_{n \to \infty} a_n = a \in \mathbb{R}$. Let us choose $\varepsilon = 1$. Then there exists $n_0 \in \mathbb{N}$ such that $a - 1 < a_n < a + 1$ for all $n > n_0$. Denote

$$K = \max\{a_1, a_2, \dots, a_{n_0}, a+1\}, \ L = \min\{a_1, a_2, \dots, a_{n_0}, a-1\}.$$

These values K and L exist, since they represent maximum and minimum of a finite set, respectively, and the inequality $L \le a_n \le K$ holds for all $n \in \mathbb{N}$. \Box

Theorem 3. Let (a_n) and (b_n) be convergent sequences, $c \in \mathbb{R}$. Let $\lim_{n \to \infty} a_n = a$, $\lim_{n \to \infty} b_n = b$.

Then the sequences

$$(ca_n)$$
, $(a_n + b_n)$, $(a_n \cdot b_n)$

converge, too, and the following equations hold:

$$\lim_{n \to \infty} (ca_n) = ca, \quad (a_n + b_n) = a + b, \quad \lim_{n \to \infty} (a_n \cdot b_n) = ab.$$

If $\lim_{n\to\infty} b_n \neq 0$, then the sequence $\left(\frac{a_n}{b_n}\right)$ convergs to the limit

$$\lim_{n \to \infty} \left(\frac{a_n}{b_n} \right) = \frac{a}{b}$$

Theorem 4. Let (a_n) and (b_n) be convergent sequences such that $a_n \leq b_n$ for all $n \in \mathbb{N}$, then $\lim_{n \to \infty} a_n \leq \lim_{n \to \infty} b_n$.

Proof. Denote
$$\lim_{n\to\infty} a_n = a$$
, $\lim_{n\to\infty} b_n = b$.
If $a > b$, then for $\varepsilon = \frac{a-b}{2} > 0$ there exist n_a , n_b such that $a - \varepsilon = \frac{a+b}{2} < a_n$ for all $n > n_a$ and $b_n < b + \varepsilon = \frac{a+b}{2}$ for all $n > n_b$. Thus $b_n < \frac{a+b}{2} < a_n$ for all $n > \max(n_a, n_b)$, which is a contradiction. \Box

Remark: The limits a and b can be equal, a = b, even if $a_n < b_n$ for all $n \in \mathbb{N}$. For example: $a_n = 0$, $b_n = \frac{1}{n}$.

Theorem 5. Let sequences (a_n) , (b_n) , (c_n) be such that $a_n \leq b_n \leq c_n$ for all $n \in \mathbb{N}$. If limits of (a_n) and (c_n) exist and are equal, *i.e.*, $\lim_{n \to \infty} a_n = \lim_{n \to \infty} c_n = a$, then the limit of a sequence (b_n) exists, too, and is equal to $\lim_{n \to \infty} b_n = a$.

Proof. The assumption is obvious for $\lim_{n\to\infty} a_n = +\infty$ or $\lim_{n\to\infty} c_n = -\infty$. Let $a \in \mathbb{R}$. Then for each $\varepsilon > 0$ there exist n_a , n_c such that $a - \varepsilon < a_n$ for all $n > n_a$ and $c_n < a + \varepsilon$ for all $n > n_b$. Thus $a - \varepsilon < a_n \le b_n \le c_n < a + \varepsilon$ for all $n > n_0 = \max(n_a, n_b)$. \Box

Theorem 6. For any sequence (a_n) , $\lim_{n\to\infty} a_n = 0$ if and only if $\lim_{n\to\infty} |a_n| = 0$.

Proof. The proposition follows directly from the definition of a limit. \Box

Theorem 7. If $\lim_{n\to\infty} a_n = 0$ and a sequence (b_n) is bounded, then $\lim_{n\to\infty} a_n b_n = 0$.

Proof. Since $\lim_{n\to\infty} a_n = 0$, it is also $\lim_{n\to\infty} |a_n| = 0$. Since a sequence (b_n) is bounded, there exists $K \in \mathbb{R}$ such that $-K \leq b_n \leq K$ for all $n \in \mathbb{N}$. Obviously, $-K|a_n| \leq |a_nb_n| \leq K|a_n|, \lim_{n\to\infty} K|a_n| = 0$.

Example 10.

Find the limit of a sequence $a_n = \frac{\sin n!}{n}$.

Solution: Denote

$$a_n = b_n \cdot c_n$$
, where $b_n = \frac{1}{n}$, $c_n = \sin n!$.

Obviously,

$$\lim_{n \to \infty} \frac{\sin n!}{n} = 0.$$

Find the limit of a sequence $a_n = \frac{2^{\cos n}}{n + \sin n!}$.

Solution: Denote

$$a_n = b_n \cdot c_n$$
, where $b_n = \frac{1}{n}$, $c_n = \frac{2^{\cos n}}{1 + (\sin n!)/n}$

Obviously,

$$\begin{split} \lim b_n &= 0; \\ |\cos n| \le 1 \Rightarrow 2^{\cos n} \le 2; \\ |\sin n!| \le 1 \Rightarrow \lim_{n \to \infty} \frac{\sin n!}{n} = 0 \Rightarrow \lim_{n \to \infty} \left(1 + \frac{\sin n!}{n}\right) = 1. \end{split}$$
A sequence (c) is therefore bounded and the previous

A sequence (c_n) is therefore bounded and the previous theorem imply that $\lim_{n\to\infty} a_n = 0$.

Theorem 8. If a sequence (a_n) is non-decreasing, then its limit (either proper or improper) exits and is equal to

 $\lim_{n \to \infty} a_n = \sup a_n \,.$

If a sequence (a_n) is non-increasing, then its limit (either proper or improper) exits and is equal to

 $\lim_{n \to \infty} a_n = \inf a_n \, .$

Remark: In other words, the theorem says that a monotone sequence always has a limit (proper or improper), and that this limit is equal to its supremum (for a non-decreasing sequence) or infimum (for a non-increasing sequence).

Proof. Suppose first that a sequence (a_n) is non-decreasing, i.e., $a_n \leq a_{n+1}$ for all $n \in \mathbb{N}$.

If (a_n) is not bounded, than for any $K \in \mathbb{R}$ there exists n_0 such that $a_{n_0} > K$. Since the sequence is non-decreasing, the inequality $K < a_{n_0} \le a_n$ holds for all $n > n_0$. Thus

 $\lim_{n \to \infty} a_n = +\infty.$

If (a_n) is bounded from above (notice that it is always bounded from below), then there exists a finite $\sup\{a_n; n \in \mathbb{N}\} = a \in \mathbb{R}$. We show that it is also a limit of the sequence (a_n) .

A supremum is an **upper-bound**, thus $a_n \leq a$ for all $n \in \mathbb{N}$. Consider any $\varepsilon > 0$. Since a supremum is the **least** upper bound, there exists $n_0 \in \mathbb{N}$ such that $a - \varepsilon < a_{n_0} \leq a$. Since (a_n) is non-decreasing, the inequality $a - \varepsilon < a_{n_0} \leq a_n \leq a$ holds for all $n > n_0$. Thus

$$\lim_{n \to \infty} a_n = a.$$

For a non-increasing sequence, the proof is analogous. \Box

On the basis of this theorem, the following important relations can be proved:

$$\lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n = e, \quad \text{more general,} \quad \lim_{n \to \infty} \left(1 + \frac{k}{n} \right)^n = e^k$$

• **Example 12.** Prove that $a_n = \left(1 + \frac{1}{n}\right)^n$ is convergent.

Denote $b_n = (1 + 1/n)^{n+1}$. This sequence is decreasing:

$$\left(1 + \frac{1}{n}\right)^{n+1} > \left(1 + \frac{1}{n+1}\right)^{n+2}$$

$$\left(\frac{n+1}{n}\right)^{n+1} > \left(\frac{n+2}{n+1}\right)^{n+2} \left| \frac{n+1}{n} \right|$$

$$\left(\frac{n+1}{n}\right)^{n+2} > \left(\frac{n+2}{n+1}\right)^{n+2} \cdot \frac{n+1}{n} \left| : \left(\frac{n+2}{n+1}\right)^{n+2}$$

$$\frac{(n+1)^2}{n(n+2)} \right)^{n+2} > 1 + \frac{1}{n}$$

Calculus 1 © Magdalena Hyksova, CTU in Prague

The last inequality is true, since

$$\left(\frac{(n+1)^2}{n(n+2)}\right)^{n+2} = \left(\frac{n^2+2n+1}{n^2+2n}\right)^{n+2} = \left(1+\frac{1}{n(n+2)}\right)^{n+2} =$$
$$= 1+1\cdot(n+2)\cdot\frac{1}{n(n+2)} + 1\cdot\binom{n+2}{2}\cdot\left(\frac{1}{n(n+2)}\right)^2 + \dots > 1+\frac{1}{n}$$

A sequence (b_n) is therefore decreasing. Since $b_n > 0$ for all n, this sequence is bounded from bellow and has a proper limit. Let us denote this limit by e. Since

$$\left(1+\frac{1}{n}\right)^{n+1} = \left(1+\frac{1}{n}\right)^n \left(1+\frac{1}{n}\right),$$

the sequence (a_n) has the same limit, called **Euler's number**:

$$\lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n = e = 2,718 \ 281 \ 828 \ 459 \ 045 \ \dots$$

• Example 13. Prove that

$$\lim_{n \to \infty} \left(1 + \frac{k}{n} \right)^n = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^{kn} = e^k.$$

Similarly as in the previous example, it can be shown that for any $k \in \mathbb{N}$, a sequence $a_n = (1 + k/n)^{n+k}$ is decreasing and bounded from bellow, thus its limit exists.

We can select a subsequence $(b_m) = (a_{km}) = (1 + 1/m)^{km+k}$. According to the previous example,

$$\lim_{m \to \infty} (1 + 1/m)^{km+k} = \left(\lim_{m \to \infty} (1 + 1/m)^m\right)^k \cdot \lim_{m \to \infty} (1 + 1/m)^k = e^k.$$

Since the limit of (a_n) exists, it is

$$\lim_{n \to \infty} \left(1 + \frac{k}{n} \right)^n = e^k.$$

• **Example 14.** Find the limit $\lim_{n\to\infty} \left(1+\frac{1}{3n}\right)^{6n+5}$.

Solution. Denote $a_n = \left(1 + \frac{1}{3n}\right)^{6n+5}$. Consider a sequence $b_m = (1 + 1/m)^{2m+5}$. Obviously $b_{3n} = a_n$, thus (a_n) is a subsequence of (b_n) . It is

$$\left(1+\frac{1}{m}\right)^{2m+5} = \left(1+\frac{1}{m}\right)^{2m} \cdot \left(1+\frac{1}{m}\right)^{5}.$$

Since the limit of the first factor is equal to e^2 and the limit of the second factor is equal to 1,

$$\lim_{n \to \infty} \left(1 + \frac{1}{3n} \right)^{6n+5} = e^2 \,.$$

Later we will prove: If $\lim_{n \to \infty} a_n = 0$, $\lim_{n \to \infty} b_n = +\infty$, then $\lim_{n \to \infty} (1 + a_n)^{b_n} = e^{\alpha}$, where $\alpha = \lim_{n \to \infty} a_n b_n$. **Definition 13.** A sequence (a_n) is called a **Cauchy sequence**, if it satisfies the **Bolzano–Cauchy condition**: For any $\varepsilon > 0$ there exist n_0 such that $|a_m - a_n| < \varepsilon$ for all m, n, where $m > n_0$ and $n > n_0$.

Theorem 9. A sequence (a_n) is convergent if and only if it is a Cauchy sequence.

Theorem 10. Let (b_n) be a subsequence of a sequence (a_n) with $\lim_{n\to\infty} a_n = a$. Then $\lim_{n\to\infty} b_n = a$.

Proof. For any $\varepsilon > 0$ (or $K \in \mathbb{R}$), it is sufficient to choose $n_0 = k_{n_0}$.

Example 15.

Prove that a sequence with $a_n = (-1)^n$ does not have a limit.

Solution. For n = 2k we get a subsequence $b_k = a_{2k} = (-1)^{2k} = 1$ with a limit equal to 1, for n = 2k + 1 we get a subsequence $b_k = a_{2k+1} = (-1)^{2k+1} = -1$ with a limit -1.

Example 16.

Prove that a sequence
$$a_n = \left(1 + \frac{(-1)^n}{n}\right)^n$$
 does not have a limit.

Solution. For even n = 2k, we get a subsequence

$$b_k = a_{2k} = \left(1 + \frac{1}{2k}\right)^{2k}.$$

It is a subsequence of a sequence $(1 + \frac{1}{n})^n$, therefore $\lim_{k \to \infty} b_k = e$. For odd n = 2k - 1, we get a subsequence

$$c_k = a_{2k-1} = \left(1 - \frac{1}{2k-1}\right)^{2k-1},$$

which is a subsequence of a sequence $(1 - \frac{1}{n})^n$. Since all terms of this sequence are less than 1, its limit cannot be equal to e > 1. Actually, $\lim_{k\to\infty} c_k = e^{-1}$. Since the sequence (a_n) contains two subsequences with different limits, its limit does not exist. **Definition 14.** A point $a \in \mathbb{R}^*$ is called **an accumulation point** of a sequence (a_n) if and only if there exists a subsequence (b_n) of a sequence (a_n) such that $a = \lim_{n \to \infty} b_n$.

Theorem 11. A point *a* is an accumulation point of a sequence (a_n) if and only if for each $U_{\varepsilon}(a)$ there exists an infinite set $N_a \subset \mathbb{N}$ such that $a_n \in U_{\varepsilon}(a)$ for all $n \in N_a$.

Proof. The theorem is just a rephrased definition of an accumulation point of a sequence. \Box

• Example 17.

For a sequence $a_n = (-1)^n$, accumulation points are 1 and -1, since

$$\lim_{k \to \infty} a_{2k} = \lim_{k \to \infty} 1 = 1, \quad \lim_{k \to \infty} a_{2k-1} = \lim_{k \to \infty} (-1) = -1.$$

Example 18.

Find all accumulation points of a sequence

$$a_n = \frac{(n+1)^2 + (-1)^n n^2}{n^2 + n + 1} \cdot \cos\left(\frac{2}{3}\pi n\right) \,.$$

Solution. $a_n = b_n \cdot c_n$, where

$$b_n = \frac{(n+1)^2 + (-1)^n n^2}{n^2 + n + 1}, \qquad c_n = \cos\left(\frac{2}{3}\pi n\right).$$

Neither of these sequences has a limit.

$$b_{2k} = \frac{8k^2 + 4k + 1}{4k^2 + 6k + 1} \to 2, \qquad b_{2k-1} = \frac{4k - 1}{4k^2 - 2k + 1} \to 0.$$

Since a sequence c_n is bounded, it is $\lim_{k \to \infty} a_{2k-1} = 0$.

Consider

$$a_{2k} = \frac{8k^2 + 4k + 1}{4k^2 + 6k + 1} \cdot \cos\left(\frac{2}{3}\pi k\right);$$

 $\cos\left(\frac{4}{3}\pi k\right)$ is equal to 1 for k = 3m and $-\frac{1}{2}$ for $k = 3m \pm 1$. A sequence (a_{2k}) has therefore a subsequence (a_{6k}) with a limit 2 and a subsequence $(a_{6k\pm 2})$ with a limit -1. Accumulation points of (a_n) are therefore -1, 0 and 2.

Example 19.

Find all accumulation points of a sequence

$$\frac{1}{2}, \frac{1}{3}, \frac{2}{3}, \frac{1}{4}, \frac{2}{4}, \frac{3}{4}, \dots, \frac{1}{n}, \frac{2}{n}, \dots, \frac{n-2}{n}, \frac{n-1}{n}, \dots$$

Solution. This sequence contains all rational numbers from the interval (0,1), i.e., all fractions $\frac{p}{q}$, where $0 are natural, mutually prime numbers. Since any real number can be approximated by a sequence of rational numbers (with an arbitrary accuracy), the set of accumulation points of a sequence <math>(a_n)$ is the whole interval $\langle 0, 1 \rangle$.

Definition 15. Let M be a set of all accumulation points of a sequence (a_n) . The number $S = \sup M$ is called **limes superior** of a sequence (a_n) and it is denoted by $\limsup_{n\to\infty} a_n$ or $\overline{\lim_{n\to\infty}} a_n$. The number $s = \inf M$ is called **limes inferior** of a sequence (a_n) and it is denoted by $\liminf_{n\to\infty} a_n$ or $\underset{n\to\infty}{\lim_{n\to\infty}} a_n$.

Example 20.

For a sequence $a_n = (-1)^n$, limes superior and limes inferior are

$$\overline{\lim_{n \to \infty}} (-1)^n = 1, \qquad \underline{\lim_{n \to \infty}} (-1)^n = -1.$$

Theorem 12. A sequence (a_n) has a limit if and only if

 $\limsup_{n \to \infty} a_n = \liminf_{n \to \infty} a_n \, .$

Theorem 13. A set *M* is compact if and only if from each sequence (a_n) , where $a_n \in M$ for all $n \in \mathbb{N}$, a subsequence can be selected such that its limit lies in *M*.