CHAPTER 3

FUNCTIONS

Mapping and Function

Consider two non-empty sets A, B. As we already know, a mapping of a set \mathbf{A} to \mathbf{B} is defined as a set F of ordered pairs $(x, y) \in \mathbf{A} \times \mathbf{B}$, where for every $x \in \mathbf{A}$ there exists exactly one element $y \in \mathbf{B}$ such that $(x, y) \in F$.

An element x is called a preimage of an element y, an element y is called an image of x in the mapping F. We also say that y is the value of the mapping F in a point x and write $y=F(x)$ or $x \mapsto F(x)$. A set \mathbf{A} is called a domain of a mapping F and it is also denoted by a symbol $\mathbf{D}(F)$ or \mathbf{D}_{F}. The set of all images in the mapping F is called range of the mapping F and it is denoted by $\mathbf{H}(F)$ or \mathbf{H}_{F}. It is $\mathbf{H}(F) \subset \mathbf{B}$.

Symbolically, a mapping F from \mathbf{A} to \mathbf{B} is expressed as follows:

$$
F: \mathbf{A} \rightarrow \mathbf{B}, \quad \mathbf{D}(F)=\mathbf{A}
$$

Special cases of a mapping F of a set \mathbf{A} to a set \mathbf{B}

A mapping in a set \mathbf{A} or a mapping of a set \mathbf{A} to itself is a mapping F where $\mathbf{A}=\mathbf{B}$.

For example:
\Leftrightarrow A real function of one real variable is a mapping in a set of all real numbers \mathbf{R}, i.e.,

$$
\mathbf{A}=\mathbf{B}=\mathbb{R}
$$

\Leftrightarrow Geometric mappings in plane and space, where A, B are sets of points in the same plane or in space.
\Leftrightarrow Invertible or One-to-one mapping is a mapping F such that every element $y \in \mathbf{H}(F)$ is an image of exactly one element $x \in \mathbf{A}=\mathbf{D}(F)$, i.e., any two different preimages x_{1}, x_{2} have also different images $F\left(x_{1}\right), F\left(x_{2}\right)$.

\Leftrightarrow A mapping of a set \mathbf{A} onto a set \mathbf{B} is a mapping F such that every element of \mathbf{B} is an image of at least one element of a set $\mathbf{A}, \mathrm{tj} . \mathbf{B}=\mathbf{H}(F)$.

\Leftrightarrow A bijection of a set A to B a one-to-one mapping of a set A onto a set B.

If a given mapping F is one-to-one, then there exists exactly one one-to-one mapping which assigns a preimage $x \in \mathbf{D}(F)$ to every element $y \in \mathbf{H}(F)$. This mapping is called inverse mapping to F and it is usually denoted by a symbol F^{-1}. Obviously: $\mathbf{D}\left(F^{-1}\right)=$ $\mathbf{H}(F), \mathbf{H}\left(F^{-1}\right)=\mathbf{D}(F)$,

$$
x=F^{-1}(y) \text { if and only if } y=F(x)
$$

Let G and F be two mappings such that $\mathbf{H}_{F} \subset \mathbf{D}_{G}$. A mapping H is called a composition of mappings F and G, if $H(x)=$ $G(F(x))$ for all $x \in \mathbf{D}_{F}$. A composition of mappings F and G (in this order) is denoted as $H=F \circ G$.

Real functions of one real variable

Real function of one real variable f is a mapping in the set of real numbers \mathbf{R}; a preimage x is called variable or argument of a function f, an image $y=f(x)$ is called function value.
Graph of a function f is a set of all points $(x, f(x))$ in a plane with a given cartesian system of coordinates:

$$
\text { graf } f=\left\{(x, y) \in \mathbb{R}^{2} \mid x \in \mathbf{D}(f), y=f(x)\right\}
$$

Properties and types of functions

\Leftrightarrow Even and odd functions

Let f be a function such that $-x \in \mathbf{D}(f)$ for all $x \in \mathbf{D}(f)$.
$\Leftrightarrow f$ is called an even function if

$$
f(-x)=f(x) \quad \text { for all } \quad x \in \mathbf{D}(f)
$$

$\Leftrightarrow f$ is called an odd function if

$$
f(-x)=-f(x) \quad \text { for all } \quad x \in \mathbf{D}(f)
$$

(Of course, many functions are NEITHER even nor odd.)

Even function:

\Rightarrow Periodic functions
A function f is called periodic if there exists a real number $p \neq 0$ such that $x \pm p \in \mathbf{D}(f)$ and $f(x \pm p)=f(x)$ for all $x \in \mathbf{D}(f)$.

\Leftrightarrow One-to-one functions and their inverses
A function is a special case of a mapping, the definitions are therefore the same as for mappings:

A function f is called one-to-one or invertible, if

$$
f\left(x_{1}\right) \neq f\left(x_{2}\right) \quad \text { for all } \quad x_{1}, x_{2} \in \mathbf{D}_{f}, x_{1} \neq x_{2}
$$

One-to-one function

This function is not one-to-one

If a function f is one-to-one, then there exists its inverse function f^{-1}, which assigns to every $y \in \mathbf{H}_{f}$ its preimage $x \in \mathbf{D}_{f}$:

$$
x=f^{-1}(y) \text { if and only if } y=f(x) .
$$

Construction of a graph of an inverse function: variable on an axis x and values of an inverse function on y-compared to the graph of f, the coordinate axis have "changed their roles", i.e., the graph of f^{-1} is symmetrical to the graph of f in an axial symmetry with respect to the axis of the first and third quadrant.

Notice that an inverse function exists only for a one-to-one function. If a function is not one-to-one, then the resulting curve is not a function:

- Functions bounded from below, from above or bounded Consider a function f and a subset \mathbf{M} of its domain $\mathbf{D}(f)$.
$\Rightarrow f$ is called bounded from below on the set \mathbf{M} if there exists $d \in \mathbf{R}$ such that $f(x) \geq d$ for all $x \in \mathbf{M}$.
$\Rightarrow f$ is called bounded from above on the set \mathbf{M} if there exists $h \in \mathbf{R}$ such that $f(x) \leq h$ for all $x \in \mathbf{M}$.
$\Rightarrow f$ is called bounded on the set \mathbf{M} if it is bounded both from below and above on \mathbf{M}.

If $\mathbf{M}=D_{f}$, we say that f bounded (from below, from above).

[^0]\Leftrightarrow Monotonic (monotone) functions
Consider a function f and a subset $\mathbf{M} \subset \mathbf{D}(f)$.
$\Rightarrow f$ is called increasing on the set \mathbf{M} if $f\left(x_{1}\right)<f\left(x_{2}\right)$ for all $x_{1}, x_{2} \in \mathbf{M}, x_{1}<x_{2}$.
$\Leftrightarrow f$ is called decreasing on the set \mathbf{M} if $f\left(x_{1}\right)>f\left(x_{2}\right)$ for all $x_{1}, x_{2} \in \mathbf{M}, x_{1}<x_{2}$.
$\Rightarrow f$ is called non-decreasing on the set \mathbf{M} if $f\left(x_{1}\right) \leq<f\left(x_{2}\right)$ for all $x_{1}, x_{2} \in \mathbf{M}, x_{1}<x_{2}$.
$\Rightarrow f$ is called non-increasing on the set \mathbf{M} if $f\left(x_{1}\right) \geq f\left(x_{2}\right)$ for all $x_{1}, x_{2} \in \mathbf{M}, x_{1}<x_{2}$.

Functions that are either increasing or decreasing are called strictly monotonic (on the given set); non-decreasing and non-increasing functions are called monotonic (on the given set).

Definition 1. We say that a function f has a
\Leftrightarrow maximum in $x_{0} \in \mathbf{D}(f)$ if

$$
f\left(x_{0}\right) \geq f(x) \quad \text { for all } \quad x \in \mathbf{D}(f)
$$

\Rightarrow minimum in $x_{0} \in \mathbf{D}(f)$ if

$$
f\left(x_{0}\right) \leq f(x) \quad \text { for all } \quad x \in \mathbf{D}(f)
$$

We speak also about (global) extremes.

Definition 2. Let $I \subset \mathbb{R}$ be interval, $f: I \rightarrow \mathbb{R}$ a function. If for all $x_{1}, x_{2}, x_{3} \in I$, where $x_{1}<x_{2}<x_{3}$, a point $A=$ $\left[x_{2}, y\right]$ of a line passing through the points $\left[x_{1} ; f\left(x_{1}\right)\right]$ and $\left[x_{3} ; f\left(x_{3}\right)\right]$ of the graph of f lies
\Rightarrow above the point $\left[x_{2}, f(x)\right]$, then f is called convex on the interval I,
\Leftrightarrow below the point $\left[x_{2}, f(x)\right]$, then f is called concave on the interval I,

Alternatively, we can say:

Definition 3. Let $I \subset \mathbb{R}$ be interval, $f: I \rightarrow \mathbb{R}$ a function. If the graph of f on the interval I lies
\Leftrightarrow above the tangent in any point $x \in I$, then f is called convex on the interval I,
\Leftrightarrow below the tangent in any point $x \in I$, then f is called concave on the interval I,

Basic elementary functions

Linear function

A linear function is any function

$$
f: y=a x+b, \quad \mathbf{D}(f)=\mathbb{R}
$$

$\mathbf{D}(f)=\mathbb{R}, \mathbf{H}(f)=\{b\}$, non-increasing and non-decreasing, not one-to-one

$$
\mathbf{D}(f)=\mathbb{R}, \mathbf{H}(f)=\mathbb{R}
$$

bounded neither from above nor below
increasing
one-to-one
decreasing one-to-one

Quadratic function

A quadratic function is any function

$$
f: y=a x^{2}+b x+c, \quad a \neq 0, \quad \mathbf{D}(f)=\mathbb{R}
$$

Graph of any quadratic function: a parabola symmetric to a vertical axis o.

An intersection of a parabola with its axis of symmetry o is called a vertex.

$$
\mathbf{D}(f)=\mathbb{R}, \mathbf{H}(f)=\left[c-\frac{b^{2}}{4 a},+\infty\right)
$$

$\mathbf{D}(f)=\mathbb{R}, \mathbf{H}(f)=\left(-\infty, c-\frac{b^{2}}{4 a}\right]$
bounded from below, not from above bounded from above, not from below

$$
\begin{array}{ll}
\text { decreasing in }\left(-\infty,-\frac{b}{2 a}\right] & \text { increasing in }\left(-\infty,-\frac{b}{2 a}\right] \\
\text { increasing in }\left[-\frac{b}{2 a},+\infty\right) & \text { decreasing in }\left[-\frac{b}{2 a},+\infty\right)
\end{array}
$$

Power function with a natural exponent

A power function with a natural exponent is any function

$$
f: y=x^{n}, \quad n \in \mathbf{N}, \quad \mathbf{D}(f)=\mathbb{R}
$$

f is linear for $n=1$, quadratic for $n=2$. For $n>1$, its graph is a parabola of the degree n.

By algebraic operations of functions $f(x)=x^{n}$, we get polynomials.

Polynomial is any function $P: \mathbb{R} \rightarrow \mathbb{R}$ of the form

$$
P(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}, a_{i} \in \mathbb{R} .
$$

If the polynomial is not identically equal to zero, then there exists a maximal n such that $a_{n} \neq 0$. This n is called degree of a polynomial P. In the following, we will suppose that $P(x)$ is not identically equal to zero and it has a degree n.
A root of a polynomial P is apoint $x_{0} \in \mathbb{R}$ such that

$$
P\left(x_{0}\right)=0 .
$$

If x_{1} is a root of $P(x)$ of degree n, we can write

$$
P(x)=\left(x-x_{1}\right) P_{1}(x),
$$

where $P_{1}(x)$ is a polynomial of degree $(n-1)$. Similarly, if x_{2} is a root of $P_{1}(x)$, it is $P_{1}(x)=\left(x-x_{2}\right) P_{2}(x)$, and thus

$$
P(x)=\left(x-x_{1}\right)\left(x-x_{2}\right) P_{2}(x),
$$

where $P_{2}(x)$ is a polynomial of the degree $(n-2)$, etc. Any polynomial can be written in the form

$$
P(x)=\left(x-x_{1}\right)^{k_{1}}\left(x-x_{2}\right)^{k_{2}} \ldots\left(x-x_{r}\right)^{k_{r}} P_{N}(x)
$$

where x_{1}, \ldots, x_{r} are pairwise different roots of $P(x)$. Natural numbers k_{i} are called multiplicity of the root x_{i} and they satisfy $N=k_{1}+k_{2}+\cdots+k_{r}, P_{N}(x)$ is a polynomial of degree $(n-N)$ which does not have real roots.
Generally, any polynomial of degree n can be written in the form

$$
\begin{array}{r}
P(x)=a_{n}\left(x-x_{1}\right)^{k_{1}}\left(x-x_{2}\right)^{k_{2}} \ldots\left(x-x_{r}\right)^{k_{r}}\left(x^{2}+p_{1} x+q_{1}\right)^{m_{1}} \\
\left(x^{2}+p_{2} x+q_{2}\right)^{m_{2}} \ldots\left(x^{2}+p_{s} x+q_{s}\right)^{m_{s}},
\end{array}
$$

where the polynomials $x^{2}+p_{i} x+q_{i}$ do not have real roots and

$$
k_{1}+k_{2}+\cdots+k_{r}+2 m_{1}+\cdots+2 m_{s}=n .
$$

Rational functions are functions of the form

$$
f(x)=\frac{P(x)}{Q(x)}
$$

where $P(x), Q(x)$ are polynomials.
Denote by X_{0} the set of all real roots of $Q(x)$. Then the domain of f is $D_{f}=\mathbb{R} \backslash X_{0}$.
If the degree n of $P(x)$ is higher or equal to the degree m of $Q(x)$, the function can be written in the form

$$
f(x)=P_{1}(x)+\frac{R(x)}{Q(x)},
$$

where $P_{1}(x)$ is a polynomial of degree $(n-m)$ and the degree of the polynomial $R(x)$ is lower than the degree of $Q(x)$.

Exponential function with the basis a

Exponential function with the basis a is a function

$$
f: y=a^{x}, \quad a>0, \quad a \neq 1, \quad D(f)=\mathbb{R} .
$$

It is increasing in \mathbb{R} for $a>1$ and decreasing in \mathbb{R} for $0<a<1$. In both cases, it is one-to-one in the whole domain.

Logaritmic function with the basis a
Logaritmic function with the basis a is defined as an inverse function to the exponential function with the same basis a. Symbolically:

$$
f: y=\log _{a} x, \quad a>0, \quad a \neq 1, \quad D(f)=(0,+\infty) .
$$

From the definition:

$$
y=\log _{a} x \Leftrightarrow x=a^{y}
$$

holds for all $x \in(0,+\infty), y \in \mathbb{R}, a>0, a \neq 1$.
The function $\log _{a} x$ is increasing in \mathbb{R} for $a>1$ and decreasing in \mathbb{R} for $0<a<1$. In both cases, it is one-to-one in the whole domain.

Some important formulas:

For $a>0, a \neq 1, x, y>0$ and $r \in \mathbb{R}$, the following equations hold:

$$
\begin{gathered}
\log _{a}(x \cdot y)=\log _{a} x+\log _{a} y \\
\log _{a}(x / y)=\log _{a} x-\log _{a} y \\
\log _{a}\left(x^{r}\right)=r \cdot \log _{a} x
\end{gathered}
$$

Different basis:

For $a, b>0, a \neq 1$:

$$
\log _{a} b=\frac{\ln b}{\ln a}
$$

Goniometric functions

$$
f: y=\sin x, \quad \mathbf{D}(f)=\mathbb{R}, \quad f: y=\cos x, \quad \mathbf{D}(f)=\mathbb{R}
$$

The function sinus is odd, cosinus is even, both functions are periodic with the period 2π. Both are bounded:

$$
-1 \leq \sin x \leq 1, \quad-1 \leq \cos x \leq 1 .
$$

For all $x \in \mathbb{R}$, it is:

$$
\sin ^{2} x+\cos ^{2} x=1
$$

$$
\begin{array}{cl}
\sin x=0 \quad \text { if and only if } & x=k \pi=2 k \cdot \frac{\pi}{2}, \quad \text { where } k \in \mathbb{Z} \\
\cos x=0 \quad \text { if and only if } & x=(2 k+1) \frac{\pi}{2}, \quad \text { where } k \in \mathbb{Z} \\
f: y=\tan x=\frac{\sin x}{\cos x}, \quad \mathbf{D}(f)=\mathbb{R}-\bigcup_{k \in \mathbb{Z}}\left\{(2 k+1) \frac{\pi}{2}\right\} \\
f: y=\cot x=\frac{\cos x}{\sin x}, \quad \mathbf{D}(f)=\mathbb{R}-\bigcup_{k \in \mathbb{Z}}\{k \pi\} .
\end{array}
$$

Important values of goniometric functions:

x	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	π	$\frac{3}{2} \pi$	2π
$\sin \alpha$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	0	-1	0
$\cos \alpha$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	-1	0	1
$\tan \alpha$	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	not def.	0	not def.	0
$\cot \alpha$	not def.	$\sqrt{3}$	1	$\frac{\sqrt{3}}{3}$	0	not def.	0	not def.

Some relations

Addition formulas

$$
\begin{aligned}
& \sin (x \pm y)=\sin x \cdot \cos y \pm \cos x \cdot \sin y \\
& \cos (x \pm y)=\cos x \cdot \cos y \mp \sin x \cdot \sin y \\
& \tan (x \pm y)=\frac{\tan x \pm \tan y}{1 \mp \tan x \cdot \tan y} \\
& \cot g(x \pm y)=\frac{ \pm \cot x \cdot \cot y-1}{\cot x \mp \cot y}
\end{aligned}
$$

Formulas for a double angle

$$
\begin{array}{ll}
\sin 2 x=2 \sin x \cdot \cos x & \tan 2 x=\frac{2 \tan x}{1-\tan ^{2} x} \\
\cos 2 x=\cos ^{2} x-\sin ^{2} x
\end{array}
$$

Formulas for a half-angle

$$
\begin{aligned}
& \sin \frac{x}{2}= \pm \sqrt{\frac{1-\cos x}{2}} \quad \tan \frac{x}{2}=\frac{1-\cos x}{\sin x}=\frac{\sin x}{1+\cos x} \\
& \cos \frac{x}{2}= \pm \sqrt{\frac{1+\cos x}{2}}
\end{aligned}
$$

The sign depends on the quadrant.

Further addition formulas

$$
\begin{aligned}
& \sin x+\sin y=2 \cdot \sin \frac{x+y}{2} \cdot \cos \frac{x-y}{2} \\
& \sin x-\sin y=2 \cdot \cos \frac{x+y}{2} \cdot \sin \frac{x-y}{2} \\
& \cos x+\cos y=2 \cdot \cos \frac{x+y}{2} \cdot \cos \frac{x-y}{2} \\
& \cos x-\cos y=-2 \cdot \sin \frac{x+y}{2} \cdot \sin \frac{x-y}{2}
\end{aligned}
$$

Odd multiples

$$
\begin{array}{ll}
\sin \left(\frac{\pi}{2}-\alpha\right)=\cos \alpha & \tan \left(\frac{\pi}{2}-\alpha\right)=\cot \alpha \\
\cos \left(\frac{\pi}{2}-\alpha\right)=\sin \alpha & \cot \left(\frac{\pi}{2}-\alpha\right)=\tan \alpha
\end{array}
$$

Cyklometric functions

Cyklometric functions are introduced as inverse functions to goniometric functions restricted to an interval on which they are one-to-one.

Arcus sinus,

$$
f: y=\arcsin x, \quad \mathbf{D}(f)=[-1,1]
$$

is defined as an inverse function to the function $\sin x$ on the interval $[-\pi / 2, \pi / 2]$. Je tedy urvcena vztahem

$$
y=\arcsin x \Longleftrightarrow x=\sin y, \quad y \in[-\pi / 2, \pi / 2] .
$$

Funkce arkuscosinus,

$$
f: y=\arccos x, \quad \mathbf{D}(f)=[-1,1],
$$

is defined as an inverse function to $\cos x$ on the interval $[0, \pi]$, i.e.:
$y=\arccos x \Longleftrightarrow x=\cos y, \quad y \in[0, \pi]$.

Calculus 1 © Magdalena Hyksova, CTU in Prague

Calculus 1 (C) Magdalena Hyksova, CTU in Prague

Arcus tangent,

$$
f: y=\operatorname{arctg} x, \quad \mathbf{D}(f)=\mathbb{R}
$$

is defined as an inverse function to $\tan x$ on the interval $(-\pi / 2, \pi / 2)$, i.e.,

$$
y=\operatorname{arctg} x \quad \Longleftrightarrow \quad x=\tan y, \quad y \in(-\pi / 2, \pi / 2)
$$

Arcus cotangent,

$$
f: y=\operatorname{arccotg} x, \quad \mathbf{D}(f)=\mathbb{R},
$$

is defined as an inverse function to $\cot x$ on the interval $(0, \pi)$, i.e.,

$$
y=\operatorname{arccotg} x \quad \Longleftrightarrow \quad x=\cot y, \quad y \in(0, \pi)
$$

Calculus 1 (C) Magdalena Hyksova, CTU in Prague

Calculus 1 (c) Magdalena Hyksova, CTU in Prague

Hyperbolic functions
Functions hyperbolic sinus and hyperbolic cosinus,

$$
\begin{array}{ll}
f: y=\sinh x, & \mathbf{D}(f)=\mathbb{R} \\
f: y=\cosh x, & \mathbf{D}(f)=\mathbb{R}
\end{array}
$$

are defined by the relations

$$
\sinh x=\frac{\mathrm{e}^{x}-\mathrm{e}^{-x}}{2}, \quad \cosh x=\frac{\mathrm{e}^{x}+\mathrm{e}^{-x}}{2}
$$

From the definition of $\sinh x$ and $\cosh x$ if follows that:

$$
\cosh ^{2} x-\sinh ^{2} x=1
$$

$$
\sinh (x \pm y)=\sinh x \cosh y \pm \cosh x \sinh y
$$

$$
\cosh (x \pm y)=\cosh x \cosh y \pm \sinh x \sinh y
$$

Functions hyperbolic tangent and hyperbolic cotangent,

$$
\begin{gathered}
f: y=\tanh x, \quad \mathbf{D}(f)=\mathbb{R} \\
f: y=\operatorname{coth} x, \quad \mathbf{D}(f)=\mathbb{R} \backslash\{0\}
\end{gathered}
$$

are defined by

$$
\tan x=\frac{\mathrm{e}^{x}-\mathrm{e}^{-x}}{\mathrm{e}^{x}+\mathrm{e}^{-x}}, \quad \operatorname{coth} x=\frac{\mathrm{e}^{x}+\mathrm{e}^{-x}}{\mathrm{e}^{x}-\mathrm{e}^{-x}}
$$

Calculus 1 (C) Magdalena Hyksova, CTU in Prague

Hyperbolometric functions
Function argument hyperbolic sinus,

$$
f: y=\operatorname{argsinh} x, \quad \mathbf{D}(f)=\mathbb{R}
$$

is defined as a function inverse to hyperbolic sinus:

$$
y=\operatorname{argsinh} x \Longleftrightarrow x=\sinh y, \quad y \in \mathbb{R},
$$

Function argument hyperbolic cosinus,

$$
f: y=\operatorname{argcosh} x, \quad \mathbf{D}(f)=[1, \infty),
$$

is defined as a function inverse to hyperbolic cosinus:

$$
y=\operatorname{argcosh} x \Longleftrightarrow x=\cosh y, \quad y \in[0, \infty)
$$

Function argument hyperbolic tangent,

$$
f: y=\tanh x, \quad \mathbf{D}(f)=(-1,1),
$$

is defined as an inverse function to hyperbolic tangens:

$$
y=\operatorname{argtgh} x \Longleftrightarrow x=\tanh y, \quad y \in \mathbb{R}
$$

Function argument hyperbolic cotangent,

$$
f: y=\operatorname{coth} x, \quad \mathbf{D}(f)=(-\infty,-1) \cup(1,+\infty)
$$

is defined by

$$
y=\operatorname{argcotgh} x \Longleftrightarrow x=\operatorname{coth} y, \quad y \in \mathbb{R} \backslash\{0\}
$$

Calculus 1 (C) Magdalena Hyksova, CTU in Prague

[^0]: Calculus 1 © Magdalena Hyksova, CTU in Prague

