CHAPTER 3

FUNCTIONS



Mapping and Function
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Consider two non-empty sets A, B. As we already know, a map-
ping of a set A to B is defined as a set F' of ordered pairs
(x,y) € A x B, where for every = € A there exists exactly one
element y € B such that (z,y) € F'.

An element z is called a preimage of an element y, an element
y is called an image of = in the mapping F. We also say that y
is the value of the mapping F in a point x and write y = F'(x) or
x — F(z). A set Ais called a domain of a mapping /" and it is
also denoted by a symbol D(F') or D. The set of all images in the
mapping F is called range of the mapping /' and it is denoted
by H(F') or Hp. Itis H(F') C B.

Symbolically, a mapping F from A to B is expressed as follows:

F: A>B, DF)=A
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Special cases of a mapping /" of aset AtoasetB

= A mapping in a set A or a mapping of a set A to itself is
a mapping F where A = B.

For example:

= A real function of one real variable is a mapping in a
set of all real numbers R, i.e.,

A=B=R.

= Geometric mappings in plane and space, where A,
B are sets of points in the same plane or in space.
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= |nvertible or One-to-one mapping is a mapping F' such
that every element y € H(F') is an image of exactly one
element z € A = D(F), i.e., any two different preimages
x1, To have also different images F'(x), F(x2).
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= A mapping of a set A onto a set B is a mapping F' such
that every element of B is an image of at least one element
of aset A, tj. B=H(F).

VN
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= A bijection of a set A to B a one-to-one mapping of a
set A onto a set B.

A
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If a given mapping F' is one-to-one, then there exists exactly one
one-to-one mapping which assigns a preimage = € D(F) to every
element y € H(F). This mapping is called inverse mapping to ¥
and it is usually denoted by a symbol 7'~!. Obviously: D(F~!) =
H(F), H(F™') = D(F),

r=F"'(y) ifand only if y = F(x)
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Let G and F' be two mappings such that Hr C Ds. A mapping
H is called a composition of mappings /' and G, if H(z) =
G(F(z)) for all z € Dg. A composition of mappings £ and G (in
this order) is denoted as H = F o (.

A=DF=DFDG HF
F
X »e ) =F(x)
D¢
B
H=F°G G
z=G(F(x))
Hroc Hs C
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Real functions of one real variable

Real function of one real variable / is a mapping in the set of
real numbers R; a preimage z is called variable or argument of
a function f, an image y = f(z) is called function value.

Graph of a function f is a set of all points (z, f(z)) in a plane
with a given cartesian system of coordinates:

graf f = {(z,y) e R* |z € D(f), y = f(z)}

yﬂ

y=f) [x, f ()]

A A5
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Properties and types of functions
= Even and odd functions

Let f be a function such that —x € D(f) for all x € D(f).

w fis called an even function if

f(—z) = f(x) forall =z e D(f).

w s called an odd function if

f(—z) = —f(x) forall zeD(f).

(Of course, many functions are NEITHER even nor odd.)
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Even function: Odd function:

J)

0= fx)
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w Periodic functions
A function f is called periodic if there exists a real number

p # 0such that x £ p € D(f) and f(x £ p) = f(x) for all
z € D(f).

y A
JX)=f(x+p)

AN AN ANAN
7 \/x \/x+p\/ \/x
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= One-to-one functions and their inverses
A function is a special case of a mapping, the definitions
are therefore the same as for mappings:

A function f is called one-to-one or invertible, if

f(ill'1> % f(l’g) fOI’ a" 1,29 € Df, T 7£ To.

Jx) = f(x)

-1 f(x)) # f(x))

One-to-one function This function is not one-to-one
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If a function f is one-to-one, then there exists its inverse function
/', which assigns to every y € H; its preimage = € Dy :

= fy) ifand only if y = f(x).
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Construction of a graph of an inverse function: variable on an axis
x and values of an inverse function on y — compared to the graph
of f, the coordinate axis have "changed their roles", i.e., the graph
of f~1 is symmetrical to the graph of f in an axial symmetry with
respect to the axis of the first and third quadrant.

Notice that an inverse function exists only for a one-to-one function.
If a function is not one-to-one, then the resulting curve is not a
function:

y4 ya

f not one-to-one

This is not

a function!
(two different values)

2 ) X
,
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= Functions bounded from below, from above or bounded
Consider a function f and a subset M of its domain D(f).

= f is called bounded from below on the set M if there exists
d € Rsuchthat f(z) > dforall z € M.

= f is called bounded from above on the set M if there exists
h € Rsuch that f(x) < hforall x € M.

= f is called bounded on the set M if it is bounded both from
below and above on M.

If M = D, we say that f bounded (from below, from above).

Y4 bounded from below Y T bounded from above
h
J(x) fx) JSXx)<h
d
X X
X i [ x i
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= Monotonic (monotone) functions
Consider a function f and a subset M C D(f).

w f is called increasing on the set M if
f(z) < f(xo) forall 21,20 € M, 2 < 5.

w f js called decreasing on the set M if
f(z1) > f(xz) for all zy, 20 € M, 27 < .

w f is called non-decreasing on the set M if
flxy) << f(xg) forall 1,20 € M, 21 < .

w f js called non-increasing on the set M if
f(z1) > f(xo) forall zy, 2o € M, 21 < 5.

Functions that are either increasing or decreasing are called strictly
monotonic (on the given set); non-decreasing and non-increasing
functions are called monotonic (on the given set).
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y T increasing on M,  decreasing on M,
f(x)<f(x3), butf is not

S(xX3)
SXs) > (%) increasingon M, M,
Sx) the inequality must hold
for ALL pairs x,<x
PR RN PRSI
S
— M, M,
X; X, X3 X, s
V4 y
S

S| = S(x5) fx) <f(xy)

S ) |=f(x3)
JOe) <f(x2)

)

Xy X X3 Xy X X3

non-increasing non-decreasing
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Definition 1. We say that a function f has a

= maximum in z, € D(f) if

f(zo) > f(x) forall =z e D(f),

= minimum in z, € D(f) if

f(zo) < f(x) forall x € D(f).

We speak also about (global) extremes.

YA YA
maximum of a function: minimum of a function:
f(xp)
/) /@) S > 1 %)
J(xy)
x
| X X, X X, "
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Definition 2. Let / C R be interval, f : I — R a function.
If for all z1, x5, x3 € I, where x; < x5 < x3, @ point A =
[22,y] of a line passing through the points [z;; f(z;)] and
[z5; f(z3)] of the graph of f lies

= above the point [x., f(x)], then f is called convex on
the interval I/,

= below the point [x2, f(z)], then f is called concave on
the interval I,

VA . YA .
convex function: concave function:
[X,, f(x)]
[x,, /(x)]
X X
X, X, xX; [ x, X, xX;
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Alternatively, we can say:

Definition 3. Let I C R be interval, f : I — R a function. If
the graph of f on the interval I lies

= above the tangent in any point = € I, then f is called
convex on the interval /,

= below the tangent in any point = € I, then f is called
concave on the interval I,

Y4 YA
convex function: concave function:
[x./(x)]
S ()
D [x, /()]
JX) X X
X | X >
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Basic elementary functions

Linear function
A linear function is any function

fry=ax+b, D(f)=R.

24
b y=ax+b, a=0
14+

(0] 1 X

D(f) =R, H(f) = {b}, non-increasing and non-decreasing,
not one-to-one
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y y
y=ax+b, \

a>0 b
b
1T 1
7ol 1 X 0
D(f) =R, H(f)=R
bounded neither from above nor below
increasing decreasing
one-to-one one-to-one
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Quadratic function

A quadratic function is any function

f:y=ar*+bx+c, a#0, D(f)=R.

Graph of any quadratic function: a parabola symmetric to a ver-
tical axis o.

An intersection of a parabola with its axis of symmetry o is called
a vertex.
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AY . Ay
c_4a
y=ax’+bx+c
a>0 y=ax’tbx+c
c
a<0
-b c
o 2a - _
% 0 b >
b’ * / 2a \
“4q
b2 b2
D(f) =B H() = [e- o) DU =R ) = (—oc— 1]

bounded from below, not from above  bounded from above, not from below

_— . _ b
decreasing in [ —oo, —— increasing in [ —oo, ——
2a 2a

increasing in [—,Jroo) decreasing in |:—,+OO)
2a 2a
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Power function with a natural exponent
A power function with a natural exponent is any function

f:y=2", neN, D(f) =R

f is linear for n = 1, quadratic for n = 2. For n > 1, its graph is a
parabola of the degree n.

y:xn Ay
evenn
0 X
y:xl’l
oddn
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By algebraic operations of functions f(z) = z", we get polyno-
mials.

Polynomial is any function P : R — R of the form
P(z) = apa”™ + ap13" "+ -+ a1z + ag, a; € R

If the polynomial is not identically equal to zero, then there exists
a maximal n such that a,, # 0. This n is called degree of a poly-
nomial P. In the following, we will suppose that P(x) is not iden-
tically equal to zero and it has a degree n.

A root of a polynomial P is apoint z, € R such that

If 1 is a root of P(z) of degree n, we can write
P(z) = (x — 1) 1 (),

where P (x) is a polynomial of degree (n — 1). Similarly, if z, is a
root of P (), itis P(z) = (z — z2) Py(x), and thus

P(z) = (z — x1)(z — x2) Py(x),
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where P,(z) is a polynomial of the degree (n — 2), etc. Any poly-
nomial can be written in the form

P(x) = (z —z)" (2 — 20)* ... (v — 2,)" Py (2),

where zi, ..., x, are pairwise different roots of P(x). Natural
numbers k; are called multiplicity of the root x; and they satisfy
N =k +ky+---+ k., Py(z) is a polynomial of degree (n — N)
which does not have real roots.

Generally, any polynomial of degree n can be written in the form

1

P(z) = a,(x — xl)kl (z— xQ)kQ (= x,,)kr (22 + i+ )"

S

(2% +por + )™ . (2 + per +q0)™
where the polynomials 22 + p;z + ¢; do not have real roots and

ky +ko+ -+ ke +2my + -+ 2mg = n.
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Rational functions are functions of the form

P(z)

Qz)

where P(x),Q(x) are polynomials.

Denote by X, the set of all real roots of Q(x). Then the domain
of fis D; =R\ X,.

If the degree n of P(x) is higher or equal to the degree m of Q(x),
the function can be written in the form

Rlz)
Qlz)’

where P, (z) is a polynomial of degree (n — m) and the degree of
the polynomial R(x) is lower than the degree of Q(z).

fz) =

f(x) = P(z) +
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Exponential function with the basis a
Exponential function with the basis a is a function

fry=ad", a>0, a#1, D(f)=R.

It is increasing in R for a > 1 and decreasing in R for 0 < a < 1.
In both cases, it is one-to-one in the whole domain.

Ay

y=ar

a>1

y:ax
0<a<l
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Logaritmic function with the basis a

Logaritmic function with the basis a is defined as an inverse
function to the exponential function with the same basis «.
Symbolically:

f:y=log,z, a>0, a#1, D(f)=(0,+0).

From the definition:

y=log,x & x=ad’

holds for all z € (0,4), y € R, a >0, a # 1.

The function log, = is increasing in R for a > 1 and decreasing
in R for 0 < a < 1. In both cases, it is one-to-one in the whole
domain.

Calculus 1 © Magdalena Hyksova, CTU in Prague

32



y=a*

y=log,x
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Some important formulas:

Fora > 0,a # 1, z,y > 0and r € R, the following equations
hold:

log,(z - y) = log, = +log,y
log,(z/y) = log, x —log, y
log,(z") =r-log,
Different basis:
Fora,b>0,a #1:
Inb

Ina’
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Goniometric functions

fiy=smz, D(f)=R,  f:y=cosz, D(f)=
VA
1
B Vi N M
sina
- o §XM -
AVB O| cosa 1 x
A k

y=sinx

ANATG
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The function sinus is odd, cosinus is even, both functions are
periodic with the period 27. Both are bounded:

—1 <sinx <1, —1 <cosz < 1.
Forall z € R, it is:
sin?z + cos?z = 1.

sinx =0 ifandonlyif z=~kr=2k-5, wherekcZ

cosz =0 ifandonlyif == (2k+1)7, wherekcZ

f:y=tanz = sin ¢ D(f) =R— Uz {k+1)Z}

cosz’

coS T
f:y=cotx = o D(f) —R—Ukez{kﬁ}.
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Important values of goniometric functions:

T 0 % % % g T %7‘(‘ 2T
sin «v 0 3 g ‘/75 1 0 -1 0
cosa | 1 |20 L0 |1 0 |
tan o 0 \/Tg 1 |vV3 gg:. 0 (r:]IZ]E 0
cota |l g [ VB[ TR0 NGE 0 G

Calculus 1 © Magdalena Hyksova, CTU in Prague



Some relations

Addition formulas

sin (x £ y) =sinx - cosy + cosz - siny

cos (x £ y) =cosx - cosy Fsinz -siny

t +t
tan (x +y) = s
1 Ftanx - tany
+cotx-coty —1
cot g (z £ y) = cotx - coty

cotx F coty
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Formulas for a double angle

2tanx

sin2x = 2sinx - cosx tan 2z = =55
—tan<x

cos 2z = cos?x — sin’

Formulas for a half-angle

o BB l—cosx x _ l—cosxz __ _sinz

Sl g = j:\/ 2 tan 2~ sinz ~  l4cosz
B l+cosx

cos 3 = 4/

The sign depends on the quadrant.
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Further addition formulas
sinz + siny = 2 - sin 2 - cos LY

sinx—sinyzQ-COS%-sin%

COST + cosy = 2-008%-008%

_ — _ 9. qin Y i TTY
CcosT — cosy = —2 - sin =~ - sin =
Odd multiples
sin (% a) = cos & tan (g a) = cot o
cos (g a) =sina cot (g a) = tan o
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Cyklometric functions

Cyklometric functions are introduced as inverse functions to goni-
ometric functions restricted to an interval on which they are one-
to-one.

Arcus sinus,

f: y=arcsinz, D(f)=][-1,1],

is defined as an inverse function to the function sin z on the inter-
val [-7/2,7/2]. Je tedy urvcena vztahem

y=arcsinz < x =siny, y€[-7/2,7/2].
Funkce arkuscosinus,

f: y=arccosz, D(f)=[-1,1],

is defined as an inverse function to cos « on the interval [0, 7| , i.e.:
y = arccosr <= x =cosy, y € [0,7].
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Ay
| y =arcsin x
2
Iy :
y=sinx
T T 4
- 2 '1 0 ] 2 X
,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -]
7777777777777777 .
2
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y=arccos x
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Arcus tangent,

f:y=—arctgz, D(f)=R,

is defined as an inverse function to tan x on the interval (—7 /2, 7/2),
i.e.,

y=arctgr <= x=tany, yé€ (—7/2,7/2).

Arcus cotangent,

f: y=arccotgz, D(f)=R,

is defined as an inverse function to cot = on the interval (0, ), i.e.,

y = arccotgr <= wx=-coty, ye€ (0,m).
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Ay

y=tgx/

T
2

y =arctg x

. x >

T2 0 2 *

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, T
2
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y =arccotx
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Hyperbolic functions

Functions hyperbolic sinus and hyperbolic cosinus,

f:y=sinhz, D(f)=R,
f:y=coshz, D(f)=R,

are defined by the relations

. et —e " et +e*
sinhr = ——, coshy = ——
2 2

From the definition of sinh 2 and cosh z if follows that:

cosh *z — sinh %z = 1,

sinh (z + y) = sinh z cosh y & cosh z sinh v,

cosh (z £ y) = coshz coshy + sinh z sinhy .
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y=coshx

v
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Functions hyperbolic tangent and hyperbolic cotangent,

f:y=tanhz, D(f)=R,
f:y=cothz, D(f)=R\{0},
are defined by

et —e™® e’ +e’ "
taner = ———, cothx =
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Hyperbolometric functions

Function argument hyperbolic sinus,
f: y=argsinhx, D(f)=R,

is defined as a function inverse to hyperbolic sinus:

y = argsinhz <= z =sinhy, yeR,

Function argument hyperbolic cosinus,

f: y=argcoshz, D(f)=][1,00),

is defined as a function inverse to hyperbolic cosinus:

y = argcoshz <= x =coshy, y€[0,00)

Calculus 1 © Magdalena Hyksova, CTU in Prague

51



Ay y=sinhx

y=argsinhx
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N y=coshx

y=argcoshx

\ 4
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Function argument hyperbolic tangent,

f: y=tanhz, D(f)=(-1,1),

is defined as an inverse function to hyperbolic tangens:

y =argtghr <= zx =tanhy, yelkR
Function argument hyperbolic cotangent,
f:y=cothz, D(f)=(—00,—1)U(1,+00),

is defined by

y = argeotghz <= x =cothy, ye R\ {0}
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yA

- y=argtghx
,,,,,, ] - e e e e e e e e e e e e e e e e e e e e e -
: y=tghx
- 0 1 X
-1
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yA

| y=argcothx

=V
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