Contested Garment:

Two hold a garment; one claims it all, the other claims half. Then the one is awarded \(\frac{3}{4} \), the other \(\frac{1}{4} \). (Talmud)

Claims: \(d_1 = 1, \ d_2 = 1/2 \)

Estate: \(E < d_1 + d_2 + \cdots + d_n \)

Solution: \(x = (x_1, x_2); \ x_1 + x_2 = E \)

\((x_i \text{ is the amount assigned to claimant } i) \)

Solution prescribed by the CG (contested garment) principle:

\[
x_i = \frac{E - (E - d_1)_+ - (E - d_2)_+}{2} + (E - d_j)_+, \quad \text{where} \ (\alpha)_+ := \text{Max} (\alpha, 0)
\]

Bankruptcy Problem: \((E, d), \ d = (d_1, d_2, \ldots d_n) \)

Claimants: \(1, 2, \ldots, n \)

Debts: \(d_1 \geq 0, \ d_2 \geq 0, \ldots,\ d_n \geq 0, \)

Estate: \(E < d_1 + d_2 + \cdots + d_n \)

Solution: \(x = (x_1, x_2, \ldots x_n); \ x_1 + x_2 + \cdots + x_n = E \)

\((x_i \text{ is the amount assigned to claimant } i) \)

Consistent solution: for all \(i \neq j \) the division of \(x_i + x_j \) prescribed by the contested garment principle for claims \(d_i, d_j \) is \((x_i, x_j) \)

Theorem (Aumann, Maschler, 1985):
Each bankruptcy problem has a unique consistent solution.

Bankruptcy game corresponding to the bankruptcy problem \((E, d) \):

\[
v_{E,d}(S):= (E - d(N \setminus S))_+, \quad \text{where} \ (\alpha)_+ := \text{Max} (\alpha, 0)
\]

Theorem (Aumann, Maschler, 1985): The consistent solution of a bankruptcy problem is the nucleolus of the corresponding game.

The standard solution of a 2-person game \(v \):

\[
x_i = \frac{v(1,2) - v(1) - v(2)}{2} + v(i)
\]

equivalently: \(x_1 + x_2 = v(1,2), \ x_1 - x_2 = v(1) - v(2) \)

In words, the standard solution gives each player \(i \) the amount \(v(i) \) that he can assure himself, and divides the remainder equally between the two players. The nucleolus, kernel and the Shapley value of a 2-person game all coincide with its standard solution.
CONTESTED GARMENT GAME

Characteristic function: \(v(1) = \frac{1}{2}, \ v(2) = 0, \ v(1, 2) = 1 \)

Core:

\[
a_1 \geq \frac{1}{2}, \ a_2 \geq 0, \ a_1 + a_2 = 1 \quad \implies \quad a_1 \in \left(\frac{1}{2}, 1 \right), \ a_2 = 1 - a_1
\]

Shapley Value:

\[
H_1 = \frac{1}{2} \cdot \frac{1}{2} + \frac{1}{2} \cdot 1 = \frac{3}{4}, \quad H_2 = \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4}
\]

Nucleolus:

\[
e(\{1\}, a) = \frac{1}{2} - a_1 \quad e(\{2\}, a) = 0 - a_2 \quad e(\{1, 2\}, a) = 1 - a_1 - a_2 = 0
\]

\[
e(a) = \left(-a_2, \frac{1}{2} - a_1, 0\right) = \left(-a_2, a_2 - \frac{1}{2}, 0\right)
\]

\[
f(a) = \left(0, -a_2, a_2 - \frac{1}{2}\right) \quad \text{iff} \quad 0 \leq a_2 \leq \frac{1}{4}
\]

\[
= \left(0, a_2 - \frac{1}{2}, -a_2\right) \quad \text{iff} \quad \frac{1}{4} \leq a_2 \leq 1
\]

\[
\implies \text{minimize} \quad \implies a_1 = \frac{3}{4}, \ a_2 = \frac{1}{4}
\]

Talmud:

\[
a_1 = \frac{1}{2} + 1 - \frac{1}{2} = \frac{3}{4}, \ a_2 = 0 + \frac{1}{4} = \frac{1}{4}
\]

Nash: Status Quo: \((u_0, v_0) = (\frac{1}{2}, 0)\)

\[
g(u, v) = \left(u - \frac{1}{2}\right) v = \left(u - \frac{1}{2}\right) (1 - u) = \frac{3}{2} u - u^2 - \frac{1}{2} = h(u)
\]

\[
h'(u) = \frac{3}{2} - 2u = 0 \quad \implies \quad u = \frac{3}{4}, \ v = \frac{1}{4}
\]
BANKRUPTCY GAME – 3 CLAIMANTS

d_1 = 100, \; d_2 = 200, \; d_3 = 300

\[E=100 \]

\[v(1) = v(2) = v(3) = v(1, 2) = v(1, 3) = v(2, 3) = 0, \; v(1, 2, 3) = 100 \]

Imputations: \(a_i \geq 0, \; a_1 + a_2 + a_3 = 100 \)

Shapley:
\[H = \left(\frac{100}{3}, \frac{100}{3}, \frac{100}{3} \right) \]

Nucleolus:
\[e(a) = (-a_1, -a_2, -a_3, -a_1 - a_2, -a_1 - a_3, -a_2 - a_3, 100 - a_1 - a_2 - a_3) \]
\[f(a) = (0, -a_1, -a_2, -a_3, -a_1 - a_2, -a_1 - a_3) \]
\[\rightsquigarrow \text{ minimize } \rightsquigarrow a_1 = a_2 = a_3 = \frac{100}{3} \]

Proportional division of \(E \):
\[\left(0, -\frac{100}{6}, -\frac{200}{6}, -\frac{300}{6}, \ldots \right) \geq_{\text{lex}} \left(0, -\frac{100}{3}, -\frac{100}{3}, -\frac{100}{3}, \ldots \right) \]

\[E=200 \]

\[v(1) = v(2) = v(3) = v(1, 2) = v(1, 3) = 0, \; v(2, 3) = 100, v(1, 2, 3) = 200 \]

Imputations: \(a_i \geq 0, \; a_1 + a_2 \geq 0, \; a_1 + a_3 \geq 0, \; a_2 + a_3 \geq 100, \; a_1 + a_2 + a_3 = 200 \)

Shapley:
\[H = \left(\frac{100}{3}, \frac{250}{3}, \frac{250}{3} \right) \]

Nucleolus:
\[e(a) = (-a_1, -a_2, -a_3, -a_1 - a_2, -a_1 - a_3, 100 - a_2 - a_3, 0) \]
\[f(a) = (0, -a_1, a_1 - 100, -a_2, -a_3, -a_1 - a_2, -a_1 - a_3) \]
\[\rightsquigarrow \text{ minimize } \rightsquigarrow a_1 = 50, \; a_2 = a_3 = 75 \]

\[E=300 \]

\[v(1) = v(2) = v(3) = v(1, 2) = 0, \; v(1, 3) = 100, \; v(2, 3) = 200, v(1, 2, 3) = 300 \]

Imputations: \(a_i \geq 0, \; a_1 + a_2 \geq 0, \; a_1 + a_3 \geq 0, \; a_2 + a_3 \geq 100, \; a_1 + a_2 + a_3 = 200 \)

Shapley:
\[H = \left(\frac{100}{3}, \frac{250}{3}, \frac{250}{3} \right) \]

Nucleolus:
\[e(a) = (-a_1, -a_2, -a_3, -a_1 - a_2, 100 - a_1 - a_3, 200 - a_2 - a_3, 0) \]
\[f(a) = (0, -a_1, a_1 - 100, -a_2, a_2 - 200, -a_3, a_3 - 300) \]
\[\rightsquigarrow \text{ minimize } \rightsquigarrow a_1 = 50, \; a_2 = 100, \; a_3 = 150 \]