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The paper picks up the threads of author’s contribution [5] given in Miesenbach two years 
ago that discussed several milestones in the history of game theory, including the first 
known mixed strategy solution related to the card game le Her. The aim of this article is to 
outline the natural connection of the initial game theoretical ideas to the contemporary 
problems of computer and transportation networking. A typical example is represented by 
the Internet: here various subjects like network operators, service providers and users 
interact; moreover, the network itself was not designed by a single person or institution 
but emerged from the interaction of various entities. Different “players” compete with 
each other, bargain, build coalitions or learn optimal strategies throughout the time. 

1   Non-Cooperative Games 

1.1 Historical Overview: from Cournot to Nash 
Recall that fundamental solution concept of non-cooperative games, Nash equilibrium (see 
[5], p. 49), has its roots already in the work [2] published by Antoine Augustin Cournot 
(1801 – 1877) in 1838. Besides other topics, Cournot investigates the demand function 

( )D F p=  which he assumes to be downward-sloping and draws it in price-quantity 
space; this function summarizes the empirical relationship between the price p and the 
quantity D sold. The fifth chapter contains a detailed analysis of monopoly. Cournot intro-
duces the concept of a cost function ( )Dφ  and gives a mathematical solution of the maxi-
mization of the profit ( ) ( )pF p Dφ−  considered as the function of the price p. The next 
chapter deals with the impact of various taxes and other fees on the income of producers 
and consumers. The seventh chapter contains today famous Cournot duopoly model: Let 
us now imagine two proprietors and two springs of which the qualities are identical, and 
which, on account of their similar positions, supply the same market in competition.1 
Cournot denotes by 1 2 ( )D D  the sales from the first (second) spring and considers the 
price p as the function of the total sales, 1 2( )p f D D= + . First he neglects the cost of pro-
duction and investigates the situation where the two proprietors – each of them indepen-
dently – seek to maximize their profits expressed by 1 1 2( )D f D D+  and 2 1 2( )D f D D+ . 

Today we would speak about a game: each proprietor controls only a part of the total 
production; the price he receives for his products to sell them all therefore depends not 
only on his own decision, but on the decision of the opponent, too, and we would use the 
best-reply analysis to find the equilibrium point. It is remarkable that Cournot did exactly 
the same, only without the word “game”: 

Proprietor (1) can have no direct influence on the determination of 2D : all that he can 
do, when 2D  has been determined by proprietor (2), is to choose for 1D  the value which is 
best for him. ... Analytically this is equivalent to saying that 1D  will be determined in 
terms of 2D  by the condition  
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1 [2], English translation, p. 79. 
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and that 2D  will be determined in terms of 1D  by the analogous condition 

[ ]2 1 2

2

( )
0

d D f D D
dD

+
= , 2 

whence it follows that the final values of 1D  and 2D , and consequently of D and of  p, will 
be determined by the system of equations 

1 2 1 1 2 1 2 2 1 2(1)    ( ) ( ) 0,             (2)    ( ) ( ) 0f D D D f D D f D D D f D D′ ′+ + + = + + + = . 

Then Cournot constructs the curves that we today call “reaction curves”, investigates 
the dynamics of the duopoly “game” and comes to the equilibrium solution that also 
represents the globally stable steady state:  

Let us suppose the curve 1 1m n  to 
be the plot of equation (1), and the 
curve 1 1m n  that of equation (2), the va-
riables 1D  and 2D  being represented 
by rectangular coordinates. If propri-
etor (1) should adopt for 1D  a value 
represented by 1ox , proprietor (2) 
would adopt for 2D  the value 1oy , 
which, for the supposed value of 1D , 
would give him the greatest profit. But 
then, for the same reason, producer (1) 
ought to adopt for 1D  the value 11ox ,  
which gives the maximum profit when 2D  has the value 1oy . This would bring producer 
(2) to the value 11oy  for 2D , and so forth; from which it is evident that an equilibrium can 
only be established where the coordinates ox  and oy  of the point of intersection i 
represent the values of 1D  and 2D . The same construction repeated on a point of the 
figure on the other side of the point i leads to symmetrical results. 

The state of equilibrium corresponding to the system of values ox and oy is therefore 
stable; i.e. if either of the producers, misled as to his true interest, leaves it temporarily, 
he will be brought back to it by a series of reactions, constantly declining in amplitude, 
and of which the dotted lines of the figure give a representation by their arrangement in 
steps. 3 

In the same chapter Cournot also considers the case of n producers and takes into 
account also the costs iφ  of production, which leads him to the system of equations: 

 1 2( ) ( ) ( ) 0,     where    1, 2, , ,    .i i i nf D D f D D i n D D D Dφ′ ′+ − = = = + + +… "  

It is not possible to discuss here the whole development of duopoly and oligopoly mo-
dels. Let us only mention the duopoly model that we will need later in this contribution, 
namely the model proposed by Heinrich von Stackelberg (1905 – 1946) in his book [16] 
published in 1934. Stackelberg considers the situation where the two duopolists act se-
quentially. One of them – usually called leader – moves first, choosing a quantity. The 
second one – follower – observes the leader’s choice and then picks a quantity that repre-
                                                 
2 Cournot uses the same notation for the derivative of a one variable function and for partial derivatives. 
3 [2], English translation, pp. 80–81, figure at the end of the book. 



sents his best reply; in his decision, the leader takes into account this follower’s reaction. 
It has become common to speak about a Stackelberg game in the case of any game where 
one player acts as a leader in the sense that he chooses his strategy first, while the other 
players act as the followers: they observe the strategy chosen by the leader and then 
choose their strategies to maximize their payoffs. 

1.2 Applications: From Oligopoly to Network Optimization 
It is not necessary to recall that within the second half of the twentieth century game 
theory became an inseparable part of the disciplines that deal with the interactions of 
people or institutions lead by people (economy, political or military sciences). With the 
fast development of computer as well as transportation networks the game theoretical 
approach has gradually gained a prominent position also in this optimization domain. 
Whether we speak about data or cars, the fundamental problem is almost the same: we are 
given a network and a rate of traffic between the source and destination nodes, and seek an 
assignment of traffic to source-destination paths. Usually it is assumed that each network 
user controls a negligible fraction of the overall traffic and the time needed to run through 
a single link of the network is load-dependent, that is, the common latency suffered by all 
traffic on the link increases with the increase of the link congestion. When there is 
a central authority with the competence to control the traffic flow to achieve the best 
performance of the network, it can prescribe the optimal assignment as a feasible 
assignment minimizing the total latency. Nevertheless, the network users are often free to 
act according to their own selfish interests; in this case we can expect the network traffic 
to converge to the Nash equilibrium. 

The first example of an equilibrium network flow emerged in the field of economics: 
it is contained in the first edition of the 1920 book [10] written by Arthur Cecil Pigou 
(1877 – 1959), the English economist known above all for his advocacy of so-called 
Pigouvian taxes – discouraging taxes on activities that cause negative externalities 
(pollution, traffic congestion). Although Pigou could not explicitly use the equilibrium 
concept introduced by John Nash almost 30 years later, he expressed the same:  

Suppose there are two roads ABD and ACD both leading from A to D. If left to itself, 
traffic would be so distributed that the trouble involved in driving a ”representative” cart 
along each of the two roads would be equal [in other words, no driver can improve his 
travel time by changing the route]. But, in some circumstances, it would be possible, by 
shifting a few carts from route B to route C, greatly to lessen the trouble of driving those 
still left on B, while only slightly increasing the trouble of driving along C. In these 
circumstances a rightly chosen measure of differential taxation against road B would 
create an ”artificial” situation superior to the ”natural” one. But the measure of 
differentiation must be rightly chosen. 

Today we can imagine ACD as a road that is 
broad enough to accomodate all cars traveling from A 
to D without congestion, but with many traffic lights 
that prolong the travel time which is always equal to 
one hour. ABD can represent a highway that is fast 
but susceptible to congestion. Denote by x the 
fraction of the overall traffic from A to D using the 
particular road, and l(x) the travel time experienced 
by drivers on that road. If the fraction of drivers using
the road ACD was positive, the travel time on the road ABD would be lower than one hour 
and it would be profitable to change the road from ACD to ABD. In equilibrium, all dri-
vers therefore use the road ABD with the travel time equal to one hour. 



      
Nevertheless, from the point of view of the whole society whose aim is to minimize 

the overall travel time 321
1 1 1 1 2 41 (1 ) (1 ) ( )x x x x x⋅ + − ⋅ − = ⋅ − + , it would be optimal if one 

half of all drivers use ACD and the other half ABD, which yields the mean travel time 45 
minutes. This is much better than one hour in equilibrium; nevertheless, it does not seem 
to be fair for those driving on ACD. 

Pigou introduced this example to illustrate the necessity of discouraging taxes for 
optimal performance of a network. After the critique by the influential American 
economist Frank Hyneman Knight (1885 – 1972) he omitted this example in other editions 
of the book. Nevertheless, today it is one of the most famous examples used for the 
illustration of the fact that the selfish behavior by independent, non-cooperative “agents” 
need not produce a socially desirable outcome. 

Another today famous example was independently introduced by Dietrich Braess in 
his 1968 paper [1]. Using the same notation as above, we can describe it in the following 
way. Consider a network with two source-destination paths svt, swt with travel times given 
by the left figure bellow. In equilibrium, the traffic splits evenly between the two paths 
and each driver travels one hour and a half.  

        
Now imagine that an additional road from v to w is built of unlimited capacity and 

zero travel time (right figure). We can easily check that in equilibrium all drivers use the 
path svwt with the travel time equal to two hours. As expressed by Roughgarden: Breass 
paradox thus shows that the intuitively helpful (or at least innocuous) action of adding 
a new zero-latency link may negatively impact all of the traffic. ([11], p. 6) 

The recent literature deals with several interesting questions that have their roots in 
the above examples:4 How bad is selfish routing? It means, what is the worst-possible 
ratio between the total latency of a flow at Nash equilibrium and that of the best 
coordinated outcome minimizing the total latency? On the other hand, how unfair is the 
optimal assignment in the comparison with Nash equilibrium? When there is no chance of 
control, the performance of the system can be positively influenced by the appropriate 
architecture of the network.  

                                                 
4 For more details and references see [11], [12]. 



Still, in many systems there is a mixture of “selfishly” and “centrally” controlled 
jobs; the congestion due to centrally controlled jobs influences the actions of selfish users. 
Similarly, there can be a central authority – for example the provider of the network – who 
can settle the prices for various paths before the selfish users start to act. These situations 
can be modeled via Stackelberg games where the leader is the central authority which 
searches the strategy that induces the selfish users (followers) to react in a way that 
minimizes the total latency in the system. 

2   Bargaining 

2.1 Historical Overview: from Edgeworth to Nash and Rubinstein 
In the domain of non-cooperative games, the players cannot usually take full advantage of 
the situation. For example, in the case of Cournot or Stackelberg duopoly it would be 
better for both players to cooperate and act together as a monopolist. Thus we come to 
a bargaining problem that is usually referred to as a problem where two or more indivi-
duals have before them several possible contractual agreements. All have interests in 
reaching an agreement but their interests are not entirely identical. What will be the agreed 
contract, assuming that all parties behave rationally? This problem was already presented 
by Francis Ysidro Edgeworth (1845–1926) in his 1881 book [3]. Since then many 
attempts had been made to get a clear cut solution.  

John Forbes Nash and the Axiomatic Approach 
One approach to the bargaining problem solution that corresponds to the general inclina-
tion to axiomatic foundations of various parts of mathematics and other scientific disci-
plines was proposed by John Forbes Nash in his paper [9] published in 1953. Nash consi-
dered a two-player bargaining problem as an ordered pair (P, u0), where P is a coopera-
tive payoff region (the set of all possible payoff pairs), 0 0( , )0 u v=u , where 0 0,u v  are the 
payoffs in the case of a disagreement (”threats”). Let us denote the bargaining solution as 

0 0( , ( , )) ( *, *)P u v u vΨ = . Nash called for the satisfaction of the following conditions that 
correspond to our intuition about a fair bargaining solution: 

1. Individual Rationality:   0 0* ,   *u u v v≥ ≥ . 

2. Pareto Optimality: there does not exist any other payoff pair ( , )u v P∈  for which 
*  and  *u u v v≥ ≥ , withal at least one inequality is strict. 

3. Feasibility: ( *, *)u v P∈ . 

4. Independence of Irrelevant Alternatives: if 'P  is a payoff region contained in P and 
0 0( , ), ( *, *) 'u v u v P∈ , then 0 0( ', ( , )) ( *, *)P u v u vΨ = . 

5. Independence Under Linear Transformations: suppose that 'P  is obtained from P by 
the linear transformation ' ,  ' ,  where , 0u au b v cv d a c= + = + > ; then  

 0 0( ', ( , )) ( * , * )P au b cv d au b cv dΨ + + = + + . 

6. Symmetry: If P is symmetric (i.e. ( , ) ( , )u v P v u P∈ ⇔ ∈ ) and 0 0u v= , then * *u v= . 

For a given bargaining problem, Nash constructs the solution which maximizes the 
product of the utility gains 0 0( )( )u u v v− −  on the set of feasible and individually rational 
payoff pairs, and proves that it is the unique solution satisfying the conditions 1 – 6. 



 
More generally, Nash bargaining solution for the case of n players and the threats 

1 2( , , , )nd d d…  selects the utility vector that maximizes the product of the utility gains 

1 1 2 2( )( ) ( )n nu d u d u d− − −"  of the players over the set of feasible agreements that are 
individually rational, i.e. 1 1, , n nu d u d≥ ≥… .  

Later other solutions were proposed that omitted some of the above conditions 
(mainly the condition 4) and replaced it by other ones.5 

Rubinstein’s Model of Alternating Offers 

In 1982 Ariel Rubinstein introduced his well-known strategic bargaining model of 
alternating offers of two players. Now it is common to consider n players who need to 
reach an agreement on a given issue. It is assumed that the players can take actions in the 
bargaining only at certain times in the set     {0, 1, 2, }T = …  that are determined in advance 
and are known to the players. In each period t T∈ , if the bargaining has not terminated 
earlier, a player whose turn it is to make an offer at time t suggests a possible agreement, 
and each of the other players may either accept the offer, reject it, or opt out of the 
negotiation. If an offer is accepted by all the players, the bargaining ends and this offer is 
implemented. If at least one of the players opts out of the bargaining, it ends with 
a conflicting outcome. If no player has chosen to opt but at least one of them has rejected 
the offer, then the bargaining process continues to period 1t +  when the next player makes 
a counteroffer, the others respond, and so on. 

Strategy of a player now specifies what to do next, for each sequence of offers 
0 1, , , ts s s… . It means, in time periods when it is the player’s turn to respond to an offer, 

the strategy specifies whether to accept it, reject it or opt out of the bargaining; when it is 
the player’s turn to make an offer, the strategy specifies which offer to make. Strategy 
profile is a collection of strategies, one for each player. 

Nash equilibrium, as it was introduced for one-stage games, denotes the strategy 
profile such that no player can profitably deviate, given the actions of the other players. 
Rubinstein highlighted the inadequacy of this concept for multistage bargaining. 
Following Selten’s definition of the perfect equilibrium (see [14], [15]), he based the 
bargaining analysis on this stronger concept. In simple words, a strategy profile is a sub-
game perfect equilibrium of a model of alternating offers if the strategy profile induced in 
every subgame is a Nash equilibrium of that subgame. 

                                                 
5 For the detailed survey and references see [17]. 



2.2 Applications: From Bargaining Politicians to Multi-Agent Systems 
One of the greatest challenges for computer science is building computer systems that can 
work together. Among the examples of such intelligent systems we can find for instance 
automated agents that monitor electricity transformation networks, teams of robotic sys-
tems acting in hostile environments, computational agents that facilitate distributed design 
and engineering, distributed transportation and planning systems, intelligent agents that 
negotiate over meeting scheduling options on behalf of people for whom they work or 
Internet agents that collaborate to provide updated information to their users. In such envi-
ronments, cooperation may improve the performance of the individual agents or the over-
all behavior of the system they form (see [6], pp. 79–85). 

For example, Kraus [6] uses Rubinstein’s model of alternating offers for data alloca-
tion problem where the players are servers of a given system and agreement is a distribu-
tion of datasets to information servers. Nash conditions or their modifications are usually 
used for characterization of optimal and fair solutions; one of the application possibilities 
is the Internet pricing as a game between an Internet service provider who chooses the 
price, and users who decide on their demand (see [18] ). 

3   Evolutionary Game Theory 

3.1 Historical Overview: from Darwin to Maynard Smith 

For a brief historical overview see author’s contribution [5], pp. 53–56. 

3.2 Applications: From Species Evolution to Internet 
Non-cooperative and cooperative games discussed above are based on two essential 
assumptions: unbounded rationality and global knowledge. Both of these assumptions 
cannot be justified when considering large networks like Internet or the transportation 
system of a large city. The view that the players are not always rational, due to either 
limited computational capabilities, or limited knowledge of other players’ nature is the 
point of departure for evolutionary game theory. As we could see in [5], the evolution 
process deals with a huge population of players that are “programmed” to adopt some 
strategies. As time proceeds, many small games are played and the strategies with high 
payoffs spread within the population. Evolutionary games in large populations thus create 
a dynamic process where the frequencies of the strategies played by population members 
change in time because of the learning or selection forces guiding the individuals’ strate-
gic choices. 

In the field of biology where these ideas were originally formed, the players are the 
genes in which the instinctive behavior is coded. The development of Internet and other 
extended networks led to the transmission of the evolutionary theory from biology to the 
domain of multi-agent systems: for the reasons mentioned above, it is more realistic to 
consider agents as players with only partial information on the nature, possible strategies 
and payoffs of other players. Agents learn how to perform well in the game by experience; 
from time to time they revise their strategies on the basis of local observations, giving the 
strategy that has led to a higher payoff a higher probability of choosing in the next round.  

A typical application is the adaptive network routing discussed for example by 
Fischer and Vöcking in their 2005 paper [4]. In the simplest case of the network with one 
starting point and one terminal point, the system can be described by the following 
differential equation: ( )P P i Pf f l lλ= ⋅ ⋅ −� , where Pf  denotes the flow on the path P, Pl  is 



the latency of this path, il  is the average latency and 0λ ≥  is a proportionality factor. 
Besides investigating stable solutions, evolutionary game theory enables us to study the 
dynamics of routing. 
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