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6 N-PLAYER COOPERATIVE GAMES

6.1 GAMES IN CHARACTERISTIC FUNCTION FORM

6.1.1 Fundamental Concepts

In the previous chapter the players were allowed to coordinate their strategies but they
could not share their payoffs. In games studied in this part full cooperation including
payoff share is possible. We will assume that the agreements are completely binding.

Definition 1. Consider an N -player game; denote with Q the set of all players.
Coalition is a group of players cooperating in strategy choices and payoff redistribu-
tion. Coalition structure is defined to be the set of all coalitions that can be formed
by the players in a given situation. Coalitions will be denoted with K,L,Q, etc., or
directly in the set form, for example {1}, {2, 3, 5}, etc.

Counter-coalition to a coalition K ⊆ Q is the set of players

Kc = Q \ K = {i ∈ Q; i 6∈ K}.

The set of all players Q is called grand coalition, its counter-coalition, that is an
empty set, is called an empty coalition.

In general, in total 2N coalitions can form in an N -player game – this is precisely the
number of subsets of the set Q.

Definition 2. A Game in Characteristic Function Form consists of the set of
players

Q = {1, 2, . . . , N}

and a real function v defined on the set of all coalitions, satisfying the following
conditions:

v(∅) = 0

and for every two disjoint coalitions K,L superaditivity holds:

v(K ∪ L) ≥ v(K) + v(L).

For the sake of simplicity, v will also denote the corresponding characteristic function
form game itself.

Values of the characteristic function give the power of particular coalitions.
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Definition 3. A game in characteristic function form is called inessential if

v(Q) =
N

∑

i=1

v({i}).

A game which is not inessential is called essential.

Theorem 1. Let K be a coalition in an inessential game. Then

v(K) =
∑

i∈K

v({i})

6.1.2 Imputations

Definition 4. Let v be a game in characteristic function form with the set of players

Q = {1, 2, . . . , N}.

An N -tuple a of real numbers is called an imputation if the following conditions
hold:

• Individual Rationality: for all players i it is

ai ≥ v({i}). (6.1)

• Collective Rationality: We have

N
∑

i=1

ai = v(Q). (6.2)

Motivation – Individual Rationality:

If for some i it would be ai < v({i}) then a coalition that would bring only ai to the
player i never forms – for the player i it is more profitable to stay alone.

Collective Rationality:

It is:
N

∑

i=1

ai ≥ v(Q). (6.3)

In the opposite case it would be

β = v(Q)−
N

∑

i=1

ai > 0.
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For players it would be more advantageous to form a grand coalition and share the total
profit v(Q) so that each receives more – for example:

a′
i = ai + β/N.

On the other side, it must also be

N
∑

i=1

ai ≤ v(Q). (6.4)

Imagine some division a was realized, i.e. the players of a certain coalition K and the
members of the corresponding counter-coalition Kc have agreed with such a division. Due
to superaditivity we have:

N
∑

i=1

ai =
∑

i∈K

ai +
∑

i∈Kc

ai = v(K) + v(Kc) ≤ v(Q).

The conditions (6.3) and (6.4) give together the collective rationality condition (6.2).

Theorem 2. Let v be a game in characteristic function form. If v is inessential, than
it has a unique imputation, namely

a = (v({1}), v({2}), . . . , v({N})).

If v is essential, than it has infinitely many imputations.

Proof. For an inessential game v : If, for some j it would be

aj > v({j}),

then
N

∑

i=1

ai >
N

∑

i=1

v({i}) = v(Q),

which is a contradiction to the collective rationality.

For an essential game v consider

β = v(Q)−
N

∑

i=1

ai > 0.

For any N -tuple α of non-negative numbers whose sum is β, the relation

ai = v({i}) + αi

defines an imputation. Since there exist infinitely many such numbers α, there exist an
infinite number of imputations. ¤
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Formalization of preferences:

Definition 5. Let v be a game in characteristic function form, K is a coalition, a, b
imputations. We say that the imputation a dominates the imputation b through
a coalition K, if the following conditions hold:

• ai > bi for all i ∈ K,

•
∑

i∈K

ai ≤ v(K).

Dominance relation will be denoted by a ÂK b.

The second condition says that a is feasible, that is, that the players in S can attain
enough payoff so that ai can actually be paid out to each player in the coalition K.

6.2 SOLUTION CONCEPTS

6.2.1 The Core

Intuitively it is clear that if an imputation is dominated by another one through some
coalition, than the players of this coalition will try to break down the original coalition
and settle the more advantagous one.

Definition 6. Let v be a game in characteristic function form. The Core of the
game consists of all imputations that are not dominated by any other imputation
through any coalition.

If an imputation a is in the core, then no group of players has a reason to form another
coalition and replace a by another imputation.
The following theorem makes the decision whether an imputation is in the core easier:

Theorem 3. Let v be a game in characteristic function form with N players, let a

be an imputation. Then a is in the core of v if and only if

∑

i∈K

ai ≥ v(K) (6.5)

for every coalition K.

Proof. ⇒ Suppose that for every coalition the relation (6.5) holds. If some other
imputation b dominates a for some coalition K, then

∑

i∈K

bi >
∑

i∈K

ai ≥ v(K),
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which violates the feasibility condition in the dominance definition. Thus, a must be in
the core.

⇐ Suppose that a is in the core and K is a coalition for which

∑

i∈K

ai < v(K).

We need to come to a contradiction. First notice thatK 6= Q, since otherwise the collective
rationality condition would not hold.
Further, there exists a player j ∈ Kc for whom

aj > v({j}).

If not, than with respect to superaditivity:

N
∑

i=1

ai < v(K) +
∑

i∈Kc

ai ≤ v(Q),

which again violates the feasibility condition. We can therefore choose such j ∈ Kc that
there exists a number α for which

0 < α ≤ aj − v({j}) and α ≤ v(Q)−
∑

i∈K

ai.

If k denotes the number of players in the coalition K, we can define a new imputation b

dominating a by
bi = ai + α/k for Pi ∈ K,
bj = aj − α,
bi = ai for all other i.

Such imputation b dominates the imputation a for K, which is a contradiction with the
assumption that a is in the core. ¤

Proposition 1. Let v be a game in characteristic function form with N players and let
a be an N -tuple of numbers. Then a is an imputation in the core if and only if it is

•
N

∑

i=1

ai = v(Q),

•
∑

i∈K

ai ≥ v(K) for every coalition K.

Proof. Obviously, every imputation in the core satisfies both conditions.
Conversely, if an N -tuple a satisfies these conditions, then applying the second con-

dition to one-player coalitions shows that individual rationality holds. The first condition
is collective rationality, and thus a is in the core, by the theorem. ¤
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☛ Example 1. Consider a three-player game given by the table:

Strategy Triplets Payoff Vectors
(1,1,1) (-2,1,2)

(1,1,2) (1,1,-1)

(1,2,1) (0,1,-1)

(1,2,2) (-1,2,0)

(2,1,1) (1,-1,1)

(2,1,2) (0,0,1)

(2,2,1) (1,0,0)

(2,2,2) (1,2,-2)

The set of players is Q = {1, 2, 3}, all possible coalitions are

∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3} = Q.

Consider a coalition K = {1, 3}. Counter-coalition is Kc = {2}. Coalition K has four
joint strategies: (1, 1), (1, 2), (2, 1), (2, 2). Counter-coalition has two pure strategies: 1, 2.
When we are interested in what the coalition K is able to guarantee for itself, we consider
a bimatrix game:

Counter-coalition Kc

Strategy 1 2

(1, 1) (0, 1) (2,−1)

Coalition K (1, 2) (0, 1) (−1, 2)

(2, 1) (2,−1) (1, 0)

(2, 2) (1, 0) (−1, 2)

Maximin values of payoff functions are 3/4 and −1/3, charakteristic function is the-
refore

v({1, 3}) = 3/4, v({2}) = −1/3.

Similarly we obtain:

v({1, 2}) = 1, v({3}) = 0 v({2, 3}) = 3/4, v({1}) = 1/4,

v(Q) = 1, v(∅) = 0.

The function v defined in this way is really a characteristic function – verify the supera-
ditivity condition.
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Imputations:

a1 + a2 + a3 = 1, a1 ≥ 1/4, a2 ≥ −1/3, a3 ≥ 0.

For example:
(1/3, 1/3, 1/3), (1/4, 3/8, 3/8), (1, 0, 0).

The core:
a1 + a2 + a3 = 1

a1 ≥ 1/4
a2 ≥ −1/3
a3 ≥ 0

a1 + a2 ≥ 1
a1 + a3 ≥ 4/3
a2 + a3 ≥ 3/4

From the first, fourth and fifth relation we have: a3 = 0, a1 + a2 = 1. But it is also
a1 ≥ 4/3, a2 ≥ 3/4. Thus the core is empty.

☛ Example 2. Consider a three-player game with characteristic function:

v({1}) = −1/2
v({2}) = 0
v({3}) = −1/2

v({1, 2}) = 1/4
v({1, 3}) = 0
v({2, 3}) = 1/2

v({1, 2, 3}) = 1

The core:
a1 + a2 + a3 = 1

a1 ≥ −1/2
a2 ≥ 0
a3 ≥ −1/2

a1 + a2 ≥ 1/4
a1 + a3 ≥ 0
a2 + a3 ≥ 1/2

This system has infinitely many solutions; for examle, the core contains the triplet
(1/3, 1/3, 1/3).

☛ Example 3. Used Car Game.
David has an old car. He no longer drives it and it is worth nothing to him unless he
can sell it. Two people are interested in buying it: Mary and Frank. Mary values the
car at 500 EUR, Frank at 700 EUR. The game consists of each of the prospective
buyers bidding on the car, and David either accepting one of the bids, or rejecting
both of them.

The core: (aD, aM , aF ); 500 ≤ aD ≤ 700, aF = 700− aD, aM = 0.
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6.2.2 Shapley Value

Shapley value takes into account player’s contribution to the success of the coalition to
which he belongs.
Let v be a game in characteristic function form withN players,K a coalition consisting

of k members, i ∈ K. The number

δ(i,K) = v(K)− v(K \ {i})

is a measure of the value which the player i contributes to the coalition K when he joins
it.
Coalition K \ {i} has k − 1 members and can be therefore created in

(

N − 1
k − 1

)

=
(N − 1)!

(k − 1)!(N − k)!

ways (the player i is out of the selection, he joins the coalition as the last one).
The mean value of player i’s contribution to all k-player coalitions is

hi(k) =
∑

K⊂Q, k=|K|

v(K)− v(K \ {i})
(

N − 1
k − 1

) =

=
∑

K⊂Q, k=|K|

(k − 1)!(N − k)!

(N − 1)!
(v(K)− v(K \ {i})) .

(6.6)

The mean value of player i’s contribution to all one-player, two-player, . . . ,
N -player coalitions is given by

Hi =
N

∑

k=1

hi(k)

N
=

∑

K⊂Q, i∈K

(N − k)!(k − 1)!

N !
(v(K)− v(K \ {i})) (6.7)

Definition 7. Shapley Vector of the N -player game in characteristic function form
is defined to be the vector

H = (H1, H2, . . . , HN), (6.8)

whose i-th component Hi is given by (6.7).

The component Hi is called the Shapley value for the player i.

Theorem 4. Let v be a game in characteristic function form. Than Shapley vector
is an imputation.

From the definition it is clear that Shapley vector always exists and is unique for
a given game.
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☛ Example 4. Find Shapley values of the game with characteristic function

v(Q) = 0, v(∅) = 0,

v({1}) = v({2}) = v({3}) = −1,

v({1, 2}) = v({1, 3}) = v({2, 3}) = 1.

In this case we have

h1(1) = −1, h1(2) =
2 + 2

2
= 2, h1(3) = −1,

Shapley value for each player is

Hi =
−1 + 2− 1

3
= 0 for i = 1, 2, 3,

and Shapley vector is H = (0, 0, 0) .

☛ Example 5. Consider a game with characteristic function

v(Q) = 200, v(∅) = 0,

v({1}) = 100, v({2}) = 10 v({3}) = 0,

v({1, 2}) = 150, v({1, 3}) = 110, v({2, 3}) = 20.

In this case we have

h1(1) = 100, h2(1) = 10, h3(1) = 0,

h1(2) =
140 + 110

2
, h2(2) =

50 + 20

2
, h3(2) =

10 + 10

2
,

h1(3) = 180, h2(3) = 90, h3(3) = 50.

On the whole:

H1(1) =
100 + 125 + 180

3
= 135,

H1(2) =
10 + 35 + 90

3
= 45,

H1(3) =
0 + 10 + 50

3
= 20,

Shapley vector: H = (135, 45, 20) .
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☛ Example 6. Consider the game from example 1 whose characteristic function is
given by

v(Q) = 1, v(∅) = 0,

v({1}) =
1

4
, v({2}) = −

1

3
, v({3}) = 0,

v({1, 2}) = 1, v({1, 3}) =
4

3
, v({2, 3}) =

3

4
.

In this case, Shapley values are

H1 =
2!0!

3!
·
1

4
+
1!1!

3!
·
4

3
+
1!1!

3!
·
4

3
+
0!2!

3!
·
1

4
=
11

18
,

similarly

H2 =
1

36
, H3 =

13

36
.

Shapley vector is therefore

H =

(

11

18
,
1

36
,
13

36

)

.

☛ Example 7. For the game from example 3 Shapley values are the following:

HD = 43 333, 3; HM = 8333, 3;HF 18 333, 3;

that is
H =

(

43 333, 3; 8 333, 3; 18 333, 3
)

.

☛ Example 8. Chelm Game.

The municipal government of Chelm is run by a City Council and a Mayor. The
Council consists of six Aldermen and a Chairman. A bill can become a law in Chelm in
two ways:

• A majority of the Council (with the Chairman voting only in the case of a tie among
the Aldermen) approves it and the Mayor signs it.

• The Council passes it, the Mayor vetoes it, but at least six of the seven members of
the Council then vote to override the veto (in this situation, the Chairman always
votes).

Define v(S) = 1 for the winning coalition, v(S) = 0 for the losing coalition S.
An 6-tuple

(aM , aC , a1, . . . , a6),

where M denotes the Mayor, C the Chairman and 1, 2, . . . , 6 the Aldermen, is an impu-
tation if and only if

aM , aC , a1, . . . , a6 ≥ 0 a aM + aC + a1 + · · ·+ a6 = 1.

It can easily be shown that the core of this game is empty.
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Since every coalition consisting at least of six members wins, it is

aM + a1 + · · ·+ a6 ≥ 1

and the same inequality holds in all cases when we omit any one of the summands. Since
all summands are nonnegative and the sum of all eight values is equal to one, all must be
equal to zero, which is a contradiction.

Let us try to find Shapley vectors for this game.
Start with the Mayor’s value. Non-zero terms in the sum (6.7) are those for which

K \ {S} is a losing coalition but K is a winning coalition (if they remove the Mayor, the
Aldermen approve the law but they do not override Mayor’s veto). In this case there exist
four types of winning coalitions:

1. K contains the Mayor, three Aldermen and the Chairman. There are

(

6
3

)

= 20

of such coalitions. Since |K| = k = 5, the contribution of these sets to the total
value of HM is

20 ·
(N − k)!(k − 1)!

N !
= 20 ·

(8− 5)!(5− 1)!

8!
= 20 ·

1

280
=
1

14
.

2. K contains the Mayor and four Aldermen. There are 15 such coalitions and the
contribution of these sets to the total value of HM is

15 ·
(8− 5)!(5− 1)!

8!
=
3

56
.

3. K contains the Mayor, four Aldermen and the Chairman. There are 15 such coali-
tions and the contribution of these sets to the total value of HM is

15 ·
(8− 6)!(6− 1)!

8!
=
5

56
.

4. K contains the Mayor and five Aldermen. There are 6 such coalitions and the
contribution of these sets to the total value of HM is

6 ·
(8− 6)!(6− 1)!

8!
=
1

28
.

On the whole,

HM =
1

14
+
3

56
+
5

56
+
1

28
=
1

4
.

Further, consider the Chairman C. In this case there exist two types of winning coa-
litions:

1. K contains the Mayor, three Aldermen and the Chairman (the vote of Aldermen
ends with a tie, the Chairman votes and the Mayor signs).
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2. K contains the Mayor and five Aldermen (the proposal will be vetoed but with help
of Chairman’s vote the veto will be overrided).

There are 20 coalitions of the first type and 6 coalitions of the second type. Thus,

HC = 20 ·
(8− 5)!(5− 1)!

8!
+ 6 ·

(8− 6)!(6− 1)!

8!
=
3

28
.

The sum of all H’s is 1, the values for particular Aldermen are obviously the same,
thus for each i = 1, 2, . . . , 6 we have

Hi =
1

6
(1−

1

4
−
3

28
) =

3

28
.

On the whole:

H =

(

1

4
,
3

28
,
3

28
, . . . ,

3

28

)

It is clear that the Mayor has much greater power than the Chairman and than an
Alderman. And it turns that the Chairman’s power is exactly equal to that of an Alder-
man.

6.2.3 Measuring the Power in Politics

Lloyd Shapley (*1923), Martin Shubik (*1926)

A Method for Eval. the Distribution of Power in a Committee System, 1954

The model of a voting situation: cooperative characteristic function form game where
a coalition that can pass a bill (winning coalition) is assigned the value 1, the coalition
that can not pass a bill (loosing coalition) is assigned the value 0.

How the power of particular voters in the voting game can be measured?
There is a group of individuals all willing to vote for some bill. They vote in order.

As soon as enough members have voted for it, it is declared passed, and the member who

voted last is given credit for having passed it. Let us choose the voting order of members

randomly. Then we may compute how often a given individual is pivotal. This latter

number serves to give us our index. (Shapley, Shubik, 1954)

In other words, the Shapley-Shubik index of voter i is

ϕi =
the number of voting orders, in which i is pivotal

n!

The combinatorial formula for ”S-S” index:

ϕi =
∑

i swings for S

(s − 1)!(n − s)!

n!
, s = |S|

where a swing voter for coalition S means that the coalition S is winning, but the
coalition S \ {i} is not winning.
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John F. Banzhaf III.

Weighted Voting doesn’t work: a Mathematical Analysis, 1965

The appropriate measure of a legislator’s power is simply the number of different

situations in which he is able to determine the outcome. More explicitly, in a situations

in which there are n legislators, each acting independently and each capable of influencing
the outcome only by means of his votes, the ratio of the power of legislator X to the power

of legislator Y is the same as the ratio of the number of possible voting combinations of

the entire legislature in which X can alter the outcome by changing his vote, to the number

of combinations in which Y can alter the outcome by changing his vote. (Bahzhaf, 1965)
In other words:
The voter i’s power should be proportional to the number of coalitions for which i is

a swing voter. It is convenient to divide this number by the total number of coalitions
containing voter i.
Unnormalized Banzhaf index:

β′
i =
number of swings for voter i

2n−1

Normalized Banzhaf index:

βi =
β′

i
∑

i β
′
i

One Man, 3,312 Votes: A Mathematical Analysis of the Electoral College,
1968
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6.2.4 Nucleolus

Let v be a game in characteristic function form with N players, a a given imputation, K
a given coalition. The number

e(K,a) = v(K)−
∑

i∈K

ai (6.9)

is called an excess of the coalition K with respect to the imputation a.

Denote by e(a) the vector with 2N − 1 components that consists of excesses of all
coalitions. Order its components downwards and denote by f(a) the vector formed in
this way.

Thus we assign a vector f(a) to every imputation a. On the set of vectors

{f(a); a is an imputation}

consider a lexicographical order. We say that the imputation b is more acceptable
than the imputation a if

f(b) ≤(lex) f(a), (6.10)

where ≤(lex) is an inequality in lexicographical order, i.e. either the first component of the
vector b is less than the first component of a, or the first components are equal and the
second component of b is less than the second component of a, or both first and second
components are equal and the third component of b is less than the third component of
a, etc.

Notice that if an imputation b is more acceptable than an imputation a, it provokes
less objections than the imputation a, or these objections are equal – the first different
excess must be less in f(b) than in f(a).

Definition 8. Nucleolus of the game is defined as such an imputation for which

f(b) ≤(lex) f(a) for all imputations a.
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☛ Example 9. For the game with characteristic function

v(Q) = 0, v(∅) = 0,

v({1}) = v({2}) = v({3}) = −1,

v({1, 2}) = v({1, 3}) = v({2, 3}) = 1, .

the vector e(a) has the following components:

−(a1 + a2 + a3),
1− a1 − a2,
1− a1 − a3,
1− a2 − a3,
−(1 + a1),
−(1 + a2),
−(1 + a3).

The first component is equal to zero because v(Q) = a1 + a2 + a3 = 0. Since ai ≥
v({i}) = −1, the last three components are always nonpositive. Only two-player coalitions
can have a positive excess. The maximum

max
a is an imputation

{1− a1 − a2, 1− a1 − a3, 1− a2 − a3}

is attained for a = (0, 0, 0).
Thus, the nucleolus is the imputation (0, 0, 0).


