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3 UTILITY THEORY

3.1 A CLASSIFICATION OF DECISION MAKING

3.1.1 Decision under Certainty

Definition 1. We say that the decision is taken under certainty if each action is
known to lead invariably to a specific outcome (prospect, alternative, etc.).

Mathematical tools: the calculus to find maxima and minima of functions, the calculus
of variations to find functions, production schedules, inventory schedules, etc.

3.1.2 Decision under Risk

Definition 2. We say that the decision is taken under risk if each action leads
to one of a set of possible specific outcomes, each outcome occurring with a known
probability.

Remark. Certainty is a degenerate case of risk where the probabilities are 0 and 1.

Example 1. An action might lead to a reward of $10 if a fair coin comes up heads, and
a loss of $5 if it comes up tails.

Example 2. More generally, consider a gamble in which one of n outcomes will occur,
and let the possible outcomes be worth a1, a2, . . . an euros, respectively. Suppose that it is
known that the respective probabilities of these outcomes are p1, p2, . . . , pn , where each
pi lies between 0 and 1 (inclusive) and their sum is 1. How much is it worth to participate
in this gamble?

The monetary expected value: b = a1p1 + a2p2 + · · ·+ anpn .

Objections to the monetary expected value – St. Petersburg Paradox:

Peter tosses a coin and continues to do so until it should land ”heads” when it comes
to the ground. He agrees to give Paul one ducat if he gets ”heads” on the very first throw,
two ducats if he gets it on the second, four if on the third, eight if on the fourth, and
so on, so that with each additional throw the number of ducats he must pay is doubled.
Suppose we seek to determine the value of Paul’s expectation.
The mean value of the win in ducats:

1 ·
1

2
+ 2 ·

1

22
+ 22 ·

1

23
+ · · ·+ 2n ·

1

2n+1
+ · · · =∞



3.2. AXIOMATIC UTILITY THEORY 25

Paradox: a reasonable person sells – with a great pleasure – the engagement in the
play for 20 ducats.
Daniel Bernoulli: a gamble should be evaluated not in terms of the value of its

alternative pay-offs but rather in terms of the value of its utilities, which he derived to
be logarithmic functions.

3.1.3 Decision under Uncertainty

Definition 3. We say that the decision is taken under uncertainty if either action
has as its consequence a set of possible specific outcomes, but the probabilities of
these outcomes are completely unknown or are not even meaningful.

3.2 AXIOMATIC UTILITY THEORY

3.2.1 Rational Preferences

Consider a finite set {A1, A2, . . . , Ar} of basic alternatives or prizes. A lottery

(p1A1, p2A2, . . . , prAr)

is a chance mechanism which yields the prizes A1, A2, . . . , Ar as outcomes with known
probabilities p1, p2, . . . , pr , where each pi ≥ 0, p1 + p2 · · · + pr = 1 . Let us order the
alternatives downwards from the most to the least preferred one.

Among the basic alternatives, we use the symbolism Ai % Aj to denote that Aj is not
preferred to Ai . Equivalently, we say that Ai is preferred or indifferent to Aj .

Assumption 1 (ordering of alternatives). The ”preference or indifference” ordering
over all basic alternatives is complete and transitive: for any Ai and Aj, either Ai % Aj

or Aj % Ai holds; and if Ai % Aj and Aj % Ak then Ai % Ak .

Now suppose that L(1), L(2), . . . , L(s) are any s lotteries which each involveA1, A2, . . . , Ar

as prizes. If q1, q2, . . . , qr are any s nonnegative numbers which sum to 1, then

(

q1L
(1), q2L

(2), . . . , qsL
(s)

)

denotes a compound lottery in the following sense: one and only one of the given s

lotteries will be the prize, and the probability that it will be L(i) is qi .

For the sake of simplification, let us denote A1 the most preferred alternative, Ar the
least preferred one.

Assumption 2 (reduction of compound lotteries). Any compound lottery is indif-
ferent to a simple lottery with A1, A2, . . . , Ar as prizes, their probabilities being computed

according to the ordinary probability calculus. In particular, if

L(i) =
(

p
(i)
1 A1, p

(i)
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r Ar,

)

for i = 1, 2, . . . , s,
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then
(

q1L
(1), q2L

(2), . . . , qsL
(s)

)

∼ (p1A1, p2A2, . . . , prAr),

where

pi = q1p
(1)
i + q2p

(2)
i + · · ·+ qsp

(s)
i .

Assumption 3 (continuity). Each prize Ai is indifferent to some lottery involving just

A1 and Ar. That is, there exists a number ui such that Ai is indifferent to

(uiA1, 0A2, . . . , 0Ar−1, (1− ui)Ar) .

For convenience, we write:

Ai ∼ (uiA1, (1− ui)Ar) = Ãi.

Assumption 4 (substitutibility). In any lottery L, Ãi is substitutable for Ai , that is,

(p1A1, p2A2, . . . , piAi, . . . , prAr) ∼ (p1A1, p2A2, . . . , piÃi, . . . , prAr).

Assumption 5 (transitivity). Preference and indifference among lotteries are transi-
tive relations.

Assumption 6 (monotonicity). A lottery (pA1, (1− p)Ar) is preferred or indifferent
to (p′A1, (1− p′)Ar) if and only if p ≥ p′.

Theorem 1. If the preference or indifference relation % satisfies assumptions 1 trough

6, there are numbers ui associated with the basic prizes Ai such that for two lotteries L

and L′ the magnitudes of the expected values

p1u1 + p2u2 + · · ·+ prur and p′1u1 + p′2u2 + · · ·+ p′rur

reflect the preference between the lotteries.

Definition 4. If a person imposes a transitive preference relation % over a set of
lotteries and if to each lottery L there is assigned a number u(L) such that the
magnitudes of the numbers reflect the preferences, i.e., u(L) ≥ u(L′) if and only if
L % L′, then we say there exists a utility function u over the lotteries.

If, in addition, the utility function has the property that

u (qL, (1− q)L′) = qu(L) + (1− q)u(L′)

for all probabilities q and lotteries L and L′, then we say the utility function is linear.


