Posloupnosti

Napište prvních pět členů posloupnosti

\[a_1 = 1; \quad a_2 = 2; \quad a_{n+2} = a_{n+1} - 2a_n; \]

b) \[\left\{ \frac{n+1}{n} \right\} \]

c) \[\left\{ 1 + \frac{2}{n} \right\} \]

Vyjádřete \(n \)-tý člen posloupnosti:

\[
\begin{align*}
a) & \quad \frac{1}{2}; \quad \frac{2}{3}; \quad \frac{3}{4}; \quad \frac{4}{5}; \quad \frac{5}{6}; \ldots \\
b) & \quad -2; \quad 4; \quad -8; \quad 16; \quad -32; \ldots
\end{align*}
\]

V aritmetické posloupnosti je pátý člen roven 36 a desátý člen \(a_{10} = 76 \). Vypočtěte \(a_1 \), diferenci \(d \) a součet \(s_5 \) prvních pěti členů dané posloupnosti.

\[a_1 = 4; \quad d = 8; \quad s_5 = 100 \]

V geometrické posloupnosti \(\{a_n\} \) je \(a_3 = 12; \quad a_7 = 192 \); vypočtěte \(a_1 \), kvicent \(q \) a součet \(s_5 \).

\[a_1 = 3; \quad q = 2; \quad s_5 = 93 \]

Dokažte podle definice, že posloupnost \(\left\{ \frac{3n+4}{n} \right\} \) má limitu 3 a je klesající. Kterým indexem počíná se všechny další členy líší od čísla 3 o méně než \(\frac{1}{100} \).

\[n_0 = 400 \]

Dokažte podle definice, že posloupnost \(\left\{ \left(\frac{1}{2} \right)^n \right\} \) má limitu 0.

Dokažte podle definice, že posloupnost \(\left\{ \frac{2n^2 - 3n + 1}{1 - n} \right\} \) diverguje k \(-\infty\).

Vypočtěte limity:

\[
\begin{align*}
a) & \quad \lim_{n \to \infty} \frac{3n^2 - 5n + 2}{5n^2 + 4n - 1} \\
b) & \quad \lim_{n \to \infty} \frac{3n + 1}{n^2 + 1} \\
c) & \quad \lim_{n \to \infty} \frac{2n^3 - 1}{n^2 - n - 1}
\end{align*}
\]

Vypočtěte limity posloupností:

\[
\begin{align*}
a) & \quad \lim_{n \to \infty} \frac{1}{n^2} (1 + 2 + 3 + \ldots + n) \\
b) & \quad \lim_{n \to \infty} \frac{(3n + 1)^4 - (n - 1)^4}{(3n + 1)^4 + (n - 1)^4} \\
c) & \quad \lim_{n \to \infty} \left(\frac{2n^5 + 3n}{n^5 - 3n^2 + 1} \right)^4 \\
d) & \quad \lim_{n \to \infty} \frac{\sqrt[n]{n^3 + 2n - 1}}{n + 2}
\end{align*}
\]
Vypočtěte limity posloupností:

a) \[\lim_{n \to \infty} \frac{(n+2)! + (n+1)!}{3^n + 5^n} \]

b) \[\lim_{n \to \infty} \frac{1}{1 + \frac{1}{3} + \frac{1}{5} + \ldots + \frac{1}{(2n-1)(2n+1)}} \]

c) \[\lim_{n \to \infty} \frac{\sqrt[n]{n}}{n+1} \cdot \cos(n!) \]

\[\lim_{n \to \infty} \sqrt[n]{a} = 1 ; \quad a > 0 . \]

Dokažte \[\lim_{n \to \infty} \sqrt[n]{n} = 1 . \]

Vypočtěte \[\lim_{n \to \infty} \left(1 + \frac{1}{2n} \right)^{6n+5} . \]

Napište prvních pět členů posloupností:

a) \[\left\{ \frac{n}{n+1} \right\} \]

b) \[\left\{ \frac{n^2 + 1}{3n^2 + 4} \right\} \]

c) \[\left\{ \left(\frac{1}{3} \right)^n \right\} \]

d) \[\left\{ 1 + \sqrt[3]{2} \right\} \]

e) \[\left\{ \left(1 + \frac{1}{n} \right)^n \right\} \]

f) \[a_1 = a_2 = 1 ; \quad a_{n+2} = 2a_{n+1} + a_n ; \]

g) \[a_1 = 1 ; \quad a_2 = 2 ; \quad a_{n+2} = a_n, a_{n+1} + (-1)^n . \]

Vyjadřte \(n \)-tý člen posloupností:

a) \[a_n = \frac{n-1}{2n} \]

b) \[a_n = \frac{1}{2n} \]

c) \[a_n = \frac{n}{2} \left(1 + (-1)^n \right) \]

d) \[a_n = \frac{n+1}{n} \]

e) \[a_n = 3^{n-1} - \frac{1}{3} \]

f) \[a_n = \frac{1}{(2n-1) \cdot 2^{2n}} \]

Vypočtěte k dané aritmetické posloupnosti žádané veličiny:

a) \[a_3 = 12 ; \quad a_7 = 32 ; \quad a_1 = ? ; \quad d = ? ; \quad s_5 = ? \]

b) \[a_3 = 20 ; \quad a_{10} = 80 ; \quad a_1 = ? ; \quad d = ? ; \quad s_5 = ? \]

c) \[a_1 = 5 ; \quad d = 3 ; \quad a_{12} = ? ; \quad s_{10} = ? \]

\[a_1 = 2 , \quad d = 5 , \quad s_5 = 60 \]

\[a_1 = -28 , \quad d = 12 , \quad s_5 = 12 \]

\[a_{12} = 38 , \quad s_{10} = 185 \]
\[d) \quad a_5 = 35; \quad d = 4; \quad a_1 = ?; \quad s_6 = ? \]
\[e) \quad a_{13} = 28; \quad a_{24} = 94; \quad a_3 = ?; \quad d = ? \]
\[f) \quad s_{10} = 820; \quad d = 6; \quad a_1 = ?; \quad a_{10} = ? \]
\[g) \quad s_7 = 100; \quad s_{12} = 220; \quad a_1 = ?; \quad d = ? \]
\[h) \quad s_8 = 124; \quad s_{14} = 635; \quad a_1 = ?; \quad d = ? \]

\[a_1 = 15, \quad s_6 = 150 \]
\[a_3 = -32, \quad d = 6 \]
\[a_1 = 55, \quad a_{10} = 109 \]
\[a_1 = \frac{66}{7}, \quad d = \frac{34}{21} \]
\[a_1 = \frac{58}{3}, \quad d = \frac{209}{21} \]

Vypočtěte součet všech přirozených čísel od 1 do 100. \[5050 \]

Vypočtěte součet všech sudých čísel od 2 do 200. \[10100 \]

Vypočtěte k dané geometrické posloupnosti žádané veličiny:
\[a) \quad a_1 = 4, \quad q = 2; \quad a_6 = ?, \quad s_6 = ? \]
\[b) \quad a_3 = 12, \quad q = \frac{3}{2}; \quad a_1 = ?, \quad s_5 = ? \]
\[c) \quad a_3 = 15, \quad a_6 = 120; \quad q = ?, \quad a_1, \quad s_5 = ? \]
\[d) \quad s_5 = 121, \quad q = 3; \quad a_1 = ?, \quad a_5 = ? \]
\[a_6 = 128, \quad s_6 = 252 \]
\[a_1 = \frac{16}{3}, \quad s_5 = \frac{211}{3} \]
\[q = 2, \quad a_1 = \frac{15}{4}, \quad s_5 = \frac{465}{4} \]
\[a_1 = 1, \quad a_5 = 81 \]

Užitím definice limity posloupnosti dokažte, že
\[a) \quad \lim_{n \to \infty} \frac{1}{n} = 0; \quad b) \quad \lim_{n \to \infty} \frac{2n^2 + 3n - 5}{3n^2 - 3} = \frac{2}{3}; \]
\[c) \quad \lim_{n \to \infty} \frac{n^2 + n - 2}{n^2 - 1} = 1; \quad d) \quad (-1)^n \cdot (0.999)^n = 0; \]
\[e) \quad \lim_{n \to \infty} \frac{2n}{n^3 + 1} = 0; \quad f) \quad \lim_{n \to \infty} \frac{n^2 + 3n + 2}{1 - n} = -\infty; \]
\[g) \quad \lim_{n \to \infty} \frac{2n^3 + n^2}{n + 2} = \infty. \]

Dokažte podle definice, že posloupnost \(\left\{\frac{3n}{n+1}\right\}\) je rostoucí a má limitu 3. Kterým indexem počíná se všechy další členy liší od čísla 3 o méně než \(\frac{3}{100}\) ? \(n_0 = 99 \)

Dokažte, že
\[a) \quad \lim_{n \to \infty} a^n = \begin{cases} 0 & |a| < 1 \\ 1 & a = 1 \\ -\infty & a > 1 \end{cases}; \quad b) \quad \lim_{n \to \infty} \frac{n}{2^n} = 0; \]
\[c) \quad \lim_{n \to \infty} \frac{2^n}{n} = 0; \quad d) \quad \lim_{n \to \infty} \frac{n!}{n^n} = 0; \quad e) \quad \lim_{n \to \infty} \frac{(n!)^2}{(2n)!} = 0; \]
\[f) \quad \lim_{n \to \infty} \frac{1}{n!} = 0; \quad g) \quad \lim_{n \to \infty} \frac{1}{n^3} = 0; \]
\[h) \quad \lim_{n \to \infty} \frac{1}{3^0} = 0. \]
Vypočtěte

\begin{align*}
\text{a)} & \quad \lim_{n \to \infty} \frac{n + 1}{n}; \\
\text{b)} & \quad \lim_{n \to \infty} \frac{(n + 1)^2}{2n^2}; \\
\text{c)} & \quad \lim_{n \to \infty} \frac{2n^2 - 3n + 1}{3n^2 - 1}; \\
\text{d)} & \quad \lim_{n \to \infty} \frac{3n^2 - n + 2}{n^2 + n + 3}; \\
\text{e)} & \quad \lim_{n \to \infty} \frac{(2n - 1)(3n + 2)}{1 - n + n^2}; \\
\text{f)} & \quad \lim_{n \to \infty} \frac{3n^2 + 1}{n^4 + 1}; \\
\text{g)} & \quad \lim_{n \to \infty} \frac{n^4 + 1}{n^3 + 2n + 3}; \\
\end{align*}

\[\left[\text{a)} 1; \text{ b)} \frac{1}{2}; \text{ c)} \frac{2}{3}; \text{ d)} 3; \text{ e)} 6; \text{ f)} 0; \text{ g)} + \infty \]

\begin{align*}
\text{Vypočtěte}
\text{a)} & \quad \lim_{n \to \infty} \left(\frac{n^5 + 1}{2n^5 + 3n} \right)^4; \\
\text{b)} & \quad \lim_{n \to \infty} \left(\frac{2n^3 - n^2 + 5}{6n^3 + 5n - 1} \right)^{-3}; \\
\text{c)} & \quad \lim_{n \to \infty} \frac{(n + 2)^2 + (2n - 1)^3}{(n - 1)^2 - (2n + 3)^3}; \\
\text{d)} & \quad \lim_{n \to \infty} \frac{(2n + 1)^4 - (n - 1)^4}{(2n + 1)^4 + (n - 1)^4}; \\
\text{e)} & \quad \lim_{n \to \infty} \frac{(n + 1)^3 - (n - 1)^3}{(n + 1)^2 + (n - 1)^2}; \\
\text{f)} & \quad \lim_{n \to \infty} \frac{(n + 1)^4 - (n - 1)^4}{(n + 1)^4 + (n - 1)^4}; \\
\end{align*}

\[\left[\text{a)} \frac{1}{16}; \text{ b)} 27; \text{ c)} -1; \text{ d)} \frac{15}{17}; \text{ e)} 3; \text{ f)} 0 \]

\begin{align*}
\text{Vypočtěte}
\text{a)} & \quad \lim_{n \to \infty} \frac{n!}{(n + 1)! - n!}; \\
\text{b)} & \quad \lim_{n \to \infty} \frac{(n + 2)! + (n + 1)!}{(n + 3)!}; \\
\text{c)} & \quad \lim_{n \to \infty} \frac{(2n + 1)! + (2n - 1)!}{(2n + 1)! - (2n - 1)!}; \\
\text{d)} & \quad \lim_{n \to \infty} \sqrt{n} \left(\sqrt{n + 1} - \sqrt{n} \right); \\
\text{e)} & \quad \lim_{n \to \infty} \frac{\sqrt{n^2 + n} + n}{n + 1}; \\
\text{f)} & \quad \lim_{n \to \infty} \frac{(\sqrt{n^2 + 1} + n)^2}{\sqrt{n^6 + 1}}. \\
\end{align*}

\[\left[\text{a)} 0; \text{ b)} 0; \text{ c)} 1; \text{ d)} \frac{1}{2}; \text{ e)} 0; \text{ f)} 4 \]

\begin{align*}
\text{Vypočtěte}
\text{a)} & \quad \lim_{n \to \infty} \left(\frac{1 + 2 + 3 + \ldots + n}{n^2} - \frac{n}{2} \right); \\
\text{b)} & \quad \lim_{n \to \infty} \frac{1 + \frac{1}{2} + \ldots + \frac{1}{n^2}}{1 + \frac{1}{3} + \ldots + \frac{1}{3^n}}; \\
\text{c)} & \quad \lim_{n \to \infty} \left(\frac{1 - 2 + 3 - 4 + \ldots + (2n - 1) - 2n}{\sqrt{n^2 + 1}} \right); \\
\text{d)} & \quad \lim_{n \to \infty} \left(\frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \ldots + \frac{1}{(n - 1)n} \right); \\
\text{e)} & \quad \lim_{n \to \infty} \frac{1^2 + 2^2 + \ldots + n^2}{2n^3 + n^2 - 1}. \\
\end{align*}

\[\left[\text{a)} - \frac{1}{2}; \text{ b)} \frac{4}{3}; \text{ c)} -1; \text{ d)} 1; \text{ e)} \frac{1}{6} \]
Vypočtěte

\[
\begin{align*}
\text{a)} & \quad \lim_{n \to \infty} \frac{(-2)^n + 3^n}{(-2)^{n+1} + 3^{n+1}}; \\
\text{b)} & \quad \lim_{n \to \infty} \frac{2^n - 1}{2^n + 1}; \\
\text{c)} & \quad \lim_{n \to \infty} \frac{2^{n+1} + 4^n + 1}{2^n + 4^n}; \\
\text{d)} & \quad \lim_{n \to \infty} \frac{a^n}{1 + a^n}; \quad a > 0; \\
\text{e)} & \quad \lim_{n \to \infty} \frac{a^n - a^{-n}}{a^n + a^{-n}}; \quad a > 0.
\end{align*}
\]

\[
\begin{align*}
\text{a)} & \quad \frac{1}{3}; \quad \text{b)} \quad 1; \quad \text{c)} \quad 4; \quad \text{d)} \quad 0, \quad a < 1; \quad \frac{1}{2}, \quad a = 1; \quad 1, \quad a > 1; \quad \text{e)} \quad -1, \quad a < 1; \quad 0, \quad a = 1; \quad 1, \quad a > 1
\end{align*}
\]

Vypočtěte

\[
\begin{align*}
\text{a)} & \quad \lim_{n \to \infty} \frac{2n^2 \cdot \cos n}{n + 3}; \\
\text{b)} & \quad \lim_{n \to \infty} \frac{n \cdot \sin n^2}{2n^2 + 3}.
\end{align*}
\]

[a) neexistuje; b) 0]

Dokažte, že posloupnost \[
\left\{ \left(1 + \frac{1}{n} \right)^{n+1} \right\}
\]
je klesající a zdola ohraničená, a proto konvergentní.

Vypočtěte

\[
\begin{align*}
\text{a)} & \quad \lim_{n \to \infty} \left(1 + \frac{3}{n} \right)^n; \\
\text{b)} & \quad \lim_{n \to \infty} \left(1 - \frac{4}{n} \right)^n; \\
\text{c)} & \quad \lim_{n \to \infty} \left(1 - \frac{1}{3n} \right)^n; \\
\text{d)} & \quad \lim_{n \to \infty} \left(\frac{n}{n + 1} \right)^n; \\
\text{e)} & \quad \lim_{n \to \infty} \left(1 + \frac{1}{2n + 3} \right)^{2n}; \\
\text{f)} & \quad \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^{3n-1}; \\
\text{g)} & \quad \lim_{n \to \infty} \left(1 + \frac{2}{n} \right)^{4n+3}; \\
\text{h)} & \quad \lim_{n \to \infty} n^{-3n} (n + 1)^{3n-5}.
\end{align*}
\]

[a) \(e^3\); b) \(e^{-4}\); c) \(e^{-1/3}\); d) \(e^{-1}\); e) \(e\); f) \(e^3\); g) \(e^8\); h) 0]