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Reference: B.J.A. Kröse and P.P. van der Smagt (1994): An Introduction to Neural 
Networks,  Poglavja 1-5, 6.1, 6.2, 7-8.
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IntroductionIntroduction: : histor icalhistor ical overviewoverview

MM ilestonesilestones

• 1943 – dawn of Artificial Neural Networks (ANN)
McCulloch in Pitts – formal representation of neuron, mathematical

abstraction – a model - of biological neuron

A biological neuron
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The neuron of McCulloch and Pitts

- Treshold activation function: elements of logic functions
- Conectionsbetween units into networks
- Formal model of nevron – unchanged until present days
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• 1949 - Hebb: psychologist, the first learning rule
• 1959 - Rosenblatt: the first who used “perceptron” for single layer network
• 1960 - Widrow, Hoff: adaline (ADAptiveLINear Element) – single layer, 

the first analiticaly derived learning rule (least squares), 
until then only heuristical learning, in analogy with BIO systems

• 1963 - Widrow, Smith: inverted pendulum, adaline
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n Perceptron (1959)
l Activation function: switching function
l Single layer network
l Can not represent XOR function

n Adaline (Adaptive linear element - 1960)
l Activation function: linear function
l Learning with “delta rule” (least squares

optimisation method)
l linear models
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ExplanationsExplanations

nn RegressionRegression

nn ClassificationClassification

nn LearningLearning: : optimisingoptimising weightsweights ofof ANNANN
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Learning methods

n Hebbs rule

n Delta rule (Widrow-Hoff rule)

n Least squares optimisation method

jiij xyw γ=∆
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• 1949 - Hebb: psychologist, the first learning rule
• 1959 - Rosenblatt: the first who used “perceptron” for single layer network
• 1960 - Widrow, Hoff: adaline (ADAptiveLINear Element) – single layer, 

the first analiticaly derived learning rule (least squares), 
until then only heuristical learning, in analogy with BIO systems

• 1963 - Widrow, Smith: inverted pendulum, adaline
• 1969 - Minsky, Papert show the limitationsof perceptrona, that can not beused

for classification of elements that are not linearly separable -XOR function
can not be represented

- nothing much happensuntil app. 1982 
Theend of single layer networksper iod!

• 1986 - Rumelhart and co.: “backpropagation” – learning rule for multi-layer
perceptron – classification of elements that are not linearly separable, 
thenonlinear mapping!!!
The renaissanceof ANN
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MultiMulti--layerlayer pperceptronerceptron
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RadialRadial basisbasis functionfunction (RBF) (RBF) networknetwork
• all weightsbetween inputs and hidden layer ≡ 1
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n Back-propagation method (BP)
n multi-layer feed-forward networks

n delta rule generalised for nonlinear problems
(gradient optimisation method)

n BP algorithm is used for the calculation of
cost function gradienta

n Applicable for all sorts of nonlinear systems, 
but differences in computation complexity

n improvements:
n Learning rate with momentum
n Learning per pattern
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§ ANN topology
§ Feed-forward networks
§ Recurrent networks

§ ANN learning
§ Supervised (associative) learning
§ Unsupervised learning (self-organisation)

§ ANN application
§ Regression
§ Classification
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Recurrent networks

n The main difference from feed-forward networks is 
that they contain feedback connections

n Mainly self-organised networks
n Rekursive neural networks
n Hopfield neural network
n Boltzmann machines
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Hopfield neural network
n Signum activation function or linear function with

saturation
n Feed-back connections
n Hopfield network as associative memory
n Theoreticaly intriguing,but less interesting for practice

Boltzmann machines
n Hopfield network with hidden layers
n Stochastic update rule instead of deterministic one –

principle of annealing
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Self-organised neural
networks
n Instead of input/output data pairs as in 

supervised learning, self-organised NN 
use only input data

n Tipically used for classification: 
clustering, vector quantification, 
dimensionality reduction, feature
extraction (pattern recognition)

n Kohonen network
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• 1949 - Hebb: psychologist, the first learning rule
• 1959 - Rosenblatt: the first who used “perceptron” for single layer network
• 1960 - Widrow, Hoff: adaline (ADAptiveLINear Element) – single layer, 
• the first analiticaly derived learning rule (least squares), 
• until then only heuristical learning, in analogy with BIO systems
• 1963 - Widrow, Smith: inverted pendulum, adaline
• 1969 - Minsky, Papert show the limitations of perceptrona, that can not be used
• for classification of elements that are not linearly separable -XOR function
• can not be represented
• - nothing much happens until app. 1982 
• The end of single layer networks period!

• 1986 - Rumelhart and co.: “backpropagation” – learning rule for multi-layer
• perceptron – classification of elements that are not linearly separable, 
• the nonlinear mapping!!!
• 1988 - Psaltis: ANN used as controller
• 1990 - Narendra in Parthasarathy: system identification and control with ANN
• 1995 - Sjöberg et co.: nonlinear system identification - nonlinear regression
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n Newton optimisation methods
(2nd order gradient optimisation
method)

n Gauss-Newton modification
n Levenberg-Marquardt modification

n Other kinds of learning (various
determenistic and stochastic
optimisation methods)
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Reinforcement learning

n Approximation of Dynamic Programming for controller learning
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ANN ANN todaytoday
• Definition of ANN: doesnot exist, only common main properties:

- composed of largenumber of simpleand interconnected elements
- in general adaptive topology

interconnections change– learning rules change “weights”
number of network elements is changing

- topology enablesparallel information processing (?)
- dataare processed according to ANN states and inputs

• HaveANN fulfilled expectations?

- Early days:  comprehension of BIO systems with mathematical
modelling, 

strong connection between BIO research and ANN, large expectations
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Growth of published conferencepapers in previous century – ANN in control loop

(from: G.W. Ng: Application of Neural Networks to Adaptive Control of Nonlinear Systems)
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ApplicationsApplications ofof ANNANN
n Aerospace (automatic pilots, fault detection etc.)
n Automotive industry (automatic control etc.)
n Finance sector (document recognition etc.)
n Electronics (control, pattern recognition etc.)
n Artificial speach (sourcerecognition etc.)
n Production systems (control, forecasting etc.)
n Medicine (signal processing applications etc.)
n Accountancy (trends forecasting etc.)
n Robotics (control, signalsprocessing etc.)
n Telecommunications (datacompression etc.)
n Transportation sciences (diagnosis systems etc.)
n Military industry (radar and sonar signalsprocessing etc.)
n Entertainment industry (animation, special effectsetc.)
n Insurance (assetsoptimisation etc.)
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- ANN – intelligent systems???
pattern recognition
systems learned from examples
generalisation ability

- Paper 1992 - (Kohonen, Neural Networks, 1988): “ANNs are parallel
inter-connected networks of simple computational elements which are intended 
to interact with the objects of the real wor ld in a similar  way to biological nervous
systems.”

• ANN development in two separatedirections:
- classification, pattern recognition – very close to ANN
- regression (ANN for systems identification and control, 

time-series identification )

differences: methodology, topology, learning rules, fieldsof applications
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Impor tantImpor tant proper tiesproper ties ofof ANNANN

a) ANN as nonlinear mapping – at least two network topologies that are
universal approximators
unknown function f(x), f(x): ℜnx → ℜny,  x ó y
ANN aproximates f(x)

b) Ability to learn from examples (v, y )
ANN parameter optimisation based on selected cost function, e.g.

with selected optimisation algorithm (learning rule)

c) Generalisation ability (comes from a) )
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MultiMulti--layerlayer pperceptronerceptron
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MultiMulti--layerlayer pperceptronerceptron –– ExampleExample 11
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MultiMulti--layerlayer pperceptronerceptron –– ExampleExample 22
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The Radial Basis Function The Radial Basis Function 
NetworkNetwork
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Radial basis function network principle

Equilibrium
curve

input

state
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RBF RBF networknetwork –– ExampleExample


