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Analytical Design of FIR Filters N =2M+1 .
Miroslav VI¢ek, Pavel Zahradk and Rolf Unbehauen H(z) = 2—:0 h(n)z=", 1)

can be written in form

M
Abstract— A new recursive algorithm for the impulse response _ M _ } m -m
coefficients of a FIR lowpass filter is developed. The algorithm H(z) = = lh(M) +2 Z h(M —m) 2 (Z +z ) :
)

is obtained from the differential equation for the amplitude

response of a lowpass filter. While the original filter exhibits L . . .
maximally flat frequency response, the abridging of the impulse Introducing into (?) chebySheV polynomials of the first kind
response provides a frequency response comparable to thosel(w) and substituting
obtained by other design methods.

m=1

a(0) = h(M) a(m) = 2h(M — m) 3
Index Terms— FIR lowpass filter, impulse response, recurrence .
formula. we obtain
M
H(z)=2"" T(w)| =2 :
I. INTRODUCTION (2) == a(0) + mz::la(m) (w) 2 QW)
HE design of an arbitrary FIR filter seems as an almost (4)

closed chapter in digital signal processing. A number ¢f €duation (4)Q(w) represents the pseudoamplitude which

_ 1 -1 —
sophisticated procedures and refined methods for design'®f @ = 3(z+2 1| _,.r = coswT' reduces to a real
linear phase FIR filters are recently available [1], [2], [, valued _frequgncy response of the zero-phase FIR filter. For
[6]. A preferable procedure is the McClellan-Parks prograffPVenience in notation we often referdgm) as the impulse
[3] which is used in the design of various equiripple FIR fite '€SPONse coefficients understanding that true causal sapul

Besides, there exists a group of methods attributed to tffsPOnse coefficients are obtained through a time shift. For

analytic design procedures. They are solely devoted tadilte
with maximally flat frequency response. Herrmann [2] ok 35
tained analytic formulae for the impulse response coeffisie

of maximally flat FIR filters using Bernstein polynomials. He 3
deduced also an empirical formula for the degree estimatic
Rajagopal and Dutta Roy [5] confirmed Herrmann’'s resul 25
by a firm theoretical examination. Cooklev and Nishihara [I
gave a generalization of the Bernstein polynomials foralirf 2
FIR linear filter cases. The order of the maximally flat FIF
filters is substantially higher than the order of their eguuile 15
counterparts and it consequently means that the number
multiplications required for an output sample is quite &rip 1
that view, VEek and Jirg [8] studied FIR notch filters and their
abridging. They also emphasized that the simple abridgfng °°
a long maximally flat FIR filter produces a filter comparabl
to that obtained by a standard windowing technique.

In our paper we present a new recursive algorithm for tt
impulse response coefficients of a maximally flat FIR filte™ % -0s -06 -04 -02 o0 02 04 06 08 1
The analytic design procedure is based on the first derevativ
of the pseudoamplitud€)(w) of an FIR filter. We call this rig 1. ¢/(w) for optimal equiripple FIR fiter of degree N = 25 and
derivative the generating function. By the first derivatiaay maximally flat FIR filter of degree N = 101.
distribution of the minima and maxima of the pseudoampétud
maps to a set of real zeros of the generating function. THESzeL, 4yimal ripple lowpass FIR filter as classified in [4] the
are distributed over the two disjoint intervals which bejon ;

; I pseudoamplitud&) (w)
to the passband and stopband, respectively. Emphasizéng th o
distribution of zeros for a maximally flat frequency respmns
we have derived the differential equation for the genegatin Q(w) = a(0) + Z a(m) T (w) )
function. The solution of the differential equation is faun ) o=t ) o
in form of the backward recursive algorithm for the impuls@as alternating local minima and maxima distributed over th

response coefficients. stopband( —1, —w,) and passband w,, 1), respectively.
It means that the first derivative of the quant@(w) as

shown in Fig. 1

0

Il. TRANSFERFUNCTION AND GENERATING FUNCTION

M
Due to the symmetry of the impulse response coefficients iQ(w) _ Z m a(m) Un_1(w) (6)
the transfer function of a linear phase FIR filter of length

m=1
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has real zeros within these two disjoint intervals only arid i Substituting expression (14) into the differential eqoiat{11)
expressed by a sum of Chebyshev polynomials of the secomé can write it as

kind U, (w) because the following identity holds Mo el —m
d Z proz-—m 5 a(m) Up,(w)
diTm(w) = m Umfl(w) . (7) m=1
w M
The equiripple approximation has the natural limit when the + Z (p — q)a(m) Up_1 (w) (15)

distribution of all zerosw,,, from Fig. 1 is simplified to the
set of zeros which are either confluent at 1 or at -1. Then the

m=1

L ptgtl+
above equation (6) reduces to + Z Wq(m) Unm—2(w) =0.
d d m=1
@Q(“’) = %Cm(w) = (®) It should be satisfied for any power of the varialle Since

_ p+q a(0) = 0 andU_;(w) = 0 we can rearrange the equation (15)
=2 g (P11 -0l 0 g e form

M+1

and it represents the first derivative of a maximally flat p+qg+2—m N
frequency response which can be found in form of Bernstein Z 2 a(m —1) Un—1(w)
polynomials [2], [5] as "Zl
1+w\ ™ & mtg 1—w\™ + Y (p— @)a(m) Up 1 (w) (16)
Cpq(w) = 9 Z m 5 . m=1
m=0 9) = ptg+2+m
. ) L . _ H U, =0.

We will call the first derivative of the pseudoamplitu@gw) + Z 2 a(m+1) Un—1(w) =0

a normalized generating function. For a maximally flat FIR hen th 7,:;:1 ) id backward . |
filters it has the form of (8) in whichy and ¢ represent the | "€n the identity (16) provides a backward recursive evalua

order of flatness at = 0 andw = =, respectively. They define ]tjon of the impulse response coefficientsif= M + 1, the
the degree of a filter irst sum in (16) produces

+q+1-M
M=p+q+1. (10) %O&(M) Uni(w) =0 7
[1l. DIFFERENTIAL EQUATION AND THE RECURSIVE W:;\(/:iz::n be satisfied by equation (10) only. Vale= M
EVALUATION OF THE IMPULSE RESPONSECOEFFICIENTS P

By differentiating (8) we get the differential equation (WQ(M —1) 4+ (p— q)a(M)) Upr—1(w) =0

d? d 18

(1= w?) 25 Cpglw) + [p— 4+ (0 + @] - Cpg(w) =0 (18)

(11) M—1) =—2(p—q)a(M 19

which is the central result in our design procedure. As the o ) (P = q)a(M), (19)
general identity (6) holds we obtain the expression which is the initial condition for the backward recursion.

p p M Comparing the expression (6) with (8) we conclude that
L ow) =20 (w) = m a(m) Up,_1(w), (12 the highest power ofy?*¢ is accompanied by a coefficient
de( ) dw pa (W) Z (m) i(w), (12) (—1)?Ma(M)2P*2. The factor2P*¢ appears here due to the

m=1
. . . . . . hebyshev polynomial expansion. It consequently gives the
which can be substituted into the differential equation) a#ﬂtial value of coefficientn (1) needed in (18) as

in order to find relations among the unknown values of
X . . . 1
the impulse response coefficient¢m). By introducing the a(M) (_1>p22(p+q)M< p;q ) . (20)

substitution 2
a(k) = ka(k) (13) The general backward recursion is based on a general igentit
we obtain following from (16) which is concisely expressed by the
q2 algorithm summarized in the Tab. I.
(1- w2)ﬁ0p,q(w) = (24) From the algorithm we are able to evaluate all the impulse
Mw response coefficients except th€). This coefficient is ob-
=S a(m)(1 - u?) a U+ (0) tained from the unit value of)(w = 1) = 1,
- dw ,
m=1 M
M om—1 Cpq(1) = a(0) + Z a(m) =1. (21)
=— 3 a(m) Up,(w) m=1
m=1 So that
M m+1 M
+ Z 5 a(m) Un—2(w). a(0)=1-Y" a(m). (22)
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TABLE |
BACKWARD RECURSION FOR THE IMPULSE RESPONSE COEFFICIENTS

given P.q
initialization a(M) = %(_1)p2-2(p+q>M p;q )
a(M —1) = =2(p — g)a(M)
body
(for k=M —11t02)
M+1-k M+1+k
— —ak-1) =(@-pak) - ————a(k+1)
(end loop on k)
integration
(for k=M to 1)
a(k) = @
(end loop on k)

This recursion completes the analytic procedure of dire€he estimated passband and stopband edges in-themain
design of FIR maximally flat filters. Note that the whole desigare given by

process is a recursive one and it does not require any DFT 1= Cpog (W) + winC o ()

algorithm nor we need any iterative technique. Wy < Wep = ; (28)
The main disadvantage of these filters is that the estimated Cpq(Wm)

filter order is approximately inversely proportional to the Cprg(Wn) — win Cl o (Win)

square of the transition bandwidth [7]. The design procedur Wes = — Cr (@) : < ws (29)

usually leads to filters of much higher order than those
with equiripple frequency response. The economization which are related to the frequency domain by relations

Chebyshev polynomial expansion of the transfer function is (30)
equivalent to the square windowing of a finite but large eixten
impulse response [8]. For the maximally flat pseudoampditudhe ripple estimatiord, is given by (24). We deal with the

Wep = COSWepT' ,  Wes = COSWeT .

we can write

L M
Qw) = a(0)+ Y a(m)Tu(w)+ Y a(m)Tn(w)
m= o m=L+1
= Q(w)+ Y a(m)Tp(w) (3)
m=L+1

Since |T,,(w)| < 1, the reduced pseudoamplitude, (w)
satisfies the required filter specifications within the aacyr
M

0p;0s < 0 = > la(m)] .

m=L+1

(24)

IV. FILTER DESIGN, ABRIDGING

Despite of the fact that the degree equation is not availab

the parameters of the abridged filtess, w,, §, andd, can be
estimated as a function éf/, L, p andgq. From the differential

equation (11) the maximum of generating function (8) is fbun

_q-p

= (25)

m

From (8) and (9) follows
O o (wm) = (26)

2 Pr o9 a
e (70 (35) (2%)
p q+p q+p

L) s (amGE)

(27)

and

Cp,q(wm)

abridging of the impulse response of the maximally flat FIR
filters leading to the maximum ripple filters only. This reeui
ment reduces substantially the number of available abdidge
filters. The standard abridging leads to a feasible FIR filter
with more general distribution of zeroes &f (w). For the

0.8

0.4

0.2

0

Fig. 2. Amplitude frequency responsgd (e/«T)| and | H, (e7“7T)]| .

maximum ripple filters the derivation of the pseudoampktud
Q' (w) exhibits zeros in—1 < w < 1 only. The abridging
process was investigated for flathess orders p,q < 45.
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The ratio of the lengths of the maximally flat filter and thé&xample 2.
first abridged maximum ripple filtef2M +1)/(2L +1) varies Consider the design of a maximally flat FIR filter with the
between 1.7 and 11. order of flathesp = 43 and ¢ = 19. The length of the
Due to the abridging process the deviation in the passbdilter is N = 127. The estimated edges (30) akg,T’ =
and stopband is not symmetrically distributed along théyuni0.57517 and w.sT = 0.6756x. The ripple limit (24) is
and zero level, respectively. In order to achieve symmatricy. = 0.0274. By abridging of the impulse response to the
deviationl =+ ¢, in the passband anttj, in the stopband, an length2L+1 = 19 and consecutive normalizing.{(n) in the
additional normalization of the impulse response is negss Tab. 1V), the frequency respon$H, (e/“T)| becomes rippled.
Frequently the parameters of the abridged filters are vefje actual edges are,T’ = 0.54527 and w,T" = 0.70387
closed to the optimal equiripple filters.
Example 1.
Consider the design of a maximally flat FIR filter with the
order of flathessp = 10 in the passband and = 5 in
the stopband. The length of the filter & = 33. The 0
estimated edges calculated using (30) argl” = 0.50467
and w.;T = 0.70397 and estimation of the ripple limit (24)
gives 6. = 0.0613. The impulse response of the filtéxn)
is given in the Tab. Il. The amplitude responié(e/“7)|
is shown in Fig. 2. The impulse responkg(n) is obtained

-10

-20

TABLE I

THE IMPULSE RESPONSECOEFFICIENTSh(n) - EXAMPLE 1. 40

[ » T hr» |
32 | 0.000000
31 || -0.000007
30 || 0.000027

29 || -0.000009 0 o1 02 03 0 05

0
1
2
3
4 28 || -0.000214 wlin
5 27| 0.000527
g ;g 8ggg§gg Fig. 3. Compa‘risqgn of frequency responses 2ihge/“T)| and
-0. 20log Hopt (e7T)] .
8 24| 0.003062 09 Hope(e77)]
9 23| 0.006313
1‘1’ gi '8-8(1)8522 and ripplesd, = 0.0116, 5, = 0.0099. The logarithmic
12 20|l 0057800 frequency response 20I6d/,(e’“7)|) of the abridged filter
13 19| 0.046946 is compared in Fig. 3 to the logarithmic frequency response
1‘5‘ ig '8-28}1238 20log(| Hope (€7<T)]) of the optimal equiripple filter with the
16 0.597881 same specification®L + 1, wy,, ws and ratiod,/ds.
TABLE IV
from the h(n) by abridging to the lengtRL + 1 = 9 and THE IMPULSE RESPONSECOEFFICIENTShq(n) - EXAMPLE 2.
consecutive normalizing (Tab. Ill). The frequency resmons
|H,(e7“T)| (Fig. 2) of the abridged filter becomes rippled. T 7 T ha) ] Pop(m) |

The actual edges ame,T’ = 0.44247 and w7 = 0.74007

and rippless,, = 0.0260, §, = 0.0388. An equivalent optimal
equiripple filter was designed with the same specifications
2L +1, wy, ws and ratiod, /d5 . The impulse responsés, (n)

and h,,;(n) of the abridged filter and the optimal equiripple
filter are compared in Tab. lIl.

24 || -0.008575| -0.010018
23 0.004643| 0.004415
22 0.009936| 0.009484
21 || -0.017589| -0.017461
20 0.000785| 0.000953
0.028308| 0.028408
18 || -0.029114 | -0.029325
17 || -0.018917 | -0.019107
16 0.070311| 0.070692
15 || -0.039266 | -0.039268

PROO~NOUNWNR O
I
[{e]

TABLE III 0 14| -0.108107 | -0.108273
COMPARISON OF THEIMPULSE RESPONSECOEFFICIENTS 1 13} 0.292790| 0.292453
12 0.624213| 0.623603
Ln I ha(m) [ hopt(n) |
0 8 0.046642] 0.046645
1 7| -0.048497 | -0.048496 ACKNOWLEDGMENT
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