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Analytical Design of FIR Filters

Miroslav Vlček, Pavel Zahradnı́k and Rolf Unbehauen

Abstract— A new recursive algorithm for the impulse response
coefficients of a FIR lowpass filter is developed. The algorithm
is obtained from the differential equation for the amplitude
response of a lowpass filter. While the original filter exhibits
maximally flat frequency response, the abridging of the impulse
response provides a frequency response comparable to those
obtained by other design methods.

Index Terms— FIR lowpass filter, impulse response, recurrence
formula.

I. I NTRODUCTION

T HE design of an arbitrary FIR filter seems as an almost
closed chapter in digital signal processing. A number of

sophisticated procedures and refined methods for design of
linear phase FIR filters are recently available [1], [2], [3], [5],
[6]. A preferable procedure is the McClellan-Parks program
[3] which is used in the design of various equiripple FIR filters.
Besides, there exists a group of methods attributed to the
analytic design procedures. They are solely devoted to filters
with maximally flat frequency response. Herrmann [2] ob-
tained analytic formulae for the impulse response coefficients
of maximally flat FIR filters using Bernstein polynomials. He
deduced also an empirical formula for the degree estimation.
Rajagopal and Dutta Roy [5] confirmed Herrmann’s results
by a firm theoretical examination. Cooklev and Nishihara [1]
gave a generalization of the Bernstein polynomials for all four
FIR linear filter cases. The order of the maximally flat FIR
filters is substantially higher than the order of their equiripple
counterparts and it consequently means that the number of
multiplications required for an output sample is quite large. In
that view, Vľcek and Jirěs [8] studied FIR notch filters and their
abridging. They also emphasized that the simple abridging of
a long maximally flat FIR filter produces a filter comparable
to that obtained by a standard windowing technique.

In our paper we present a new recursive algorithm for the
impulse response coefficients of a maximally flat FIR filter.
The analytic design procedure is based on the first derivative
of the pseudoamplitudeQ(w) of an FIR filter. We call this
derivative the generating function. By the first derivative, any
distribution of the minima and maxima of the pseudoamplitude
maps to a set of real zeros of the generating function. The zeros
are distributed over the two disjoint intervals which belong
to the passband and stopband, respectively. Emphasizing the
distribution of zeros for a maximally flat frequency response
we have derived the differential equation for the generating
function. The solution of the differential equation is found
in form of the backward recursive algorithm for the impulse
response coefficients.

II. T RANSFERFUNCTION AND GENERATING FUNCTION

Due to the symmetry of the impulse response coefficients
the transfer function of a linear phase FIR filter of length

N = 2M + 1

H(z) =

N−1
∑

n=0

h(n) z−n , (1)

can be written in form

H(z) = z−M

[

h(M) + 2

M
∑

m=1

h(M − m)
1

2

(

zm + z−m
)

]

.

(2)
Introducing into (2) Chebyshev polynomials of the first kind
Tm(w) and substituting

a(0) = h(M) a(m) = 2h(M − m) (3)

we obtain

H(z) = z−M

[

a(0) +

M
∑

m=1

a(m)Tm(w)

]

= z−MQ(w) .

(4)
In equation (4)Q(w) represents the pseudoamplitude which
for w = 1

2 (z + z−1)
∣

∣

z=ejωT = cos ωT reduces to a real
valued frequency response of the zero-phase FIR filter. For
convenience in notation we often refer toa(m) as the impulse
response coefficients understanding that true causal impulse
response coefficients are obtained through a time shift. For
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Fig. 1. Q′(w) for optimal equiripple FIR filter of degree N = 25 and
maximally flat FIR filter of degree N = 101.

a maximal ripple lowpass FIR filter as classified in [4] the
pseudoamplitudeQ(w)

Q(w) = a(0) +
M
∑

m=1

a(m)Tm(w) (5)

has alternating local minima and maxima distributed over the
stopband( −1, −wp) and passband( wp, 1), respectively.

It means that the first derivative of the quantityQ(w) as
shown in Fig. 1

d

dw
Q(w) =

M
∑

m=1

m a(m) Um−1(w) (6)
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has real zeros within these two disjoint intervals only and it is
expressed by a sum of Chebyshev polynomials of the second
kind Um(w) because the following identity holds

d

dw
Tm(w) = m Um−1(w) . (7)

The equiripple approximation has the natural limit when the
distribution of all zerosw0µ from Fig. 1 is simplified to the
set of zeros which are either confluent at 1 or at -1. Then the
above equation (6) reduces to

d

dw
Q(w) ≡

d

dw
Cp,q(w) = (8)

= 2−(p+q+1) (p + q + 1)

(

p + q
p

)

(1 − w)p(1 + w)q

and it represents the first derivative of a maximally flat
frequency response which can be found in form of Bernstein
polynomials [2], [5] as

Cp,q(w) =

(

1 + w

2

)q+1 p
∑

m=0

(

m + q
m

) (

1 − w

2

)m

.

(9)
We will call the first derivative of the pseudoamplitudeQ(w)
a normalized generating function. For a maximally flat FIR
filters it has the form of (8) in whichp and q represent the
order of flatness atω = 0 andω = π, respectively. They define
the degree of a filter

M = p + q + 1 . (10)

III. D IFFERENTIAL EQUATION AND THE RECURSIVE

EVALUATION OF THE IMPULSE RESPONSECOEFFICIENTS

By differentiating (8) we get the differential equation

(1 − w2)
d 2

dw2
Cp,q(w) + [p − q + (p + q)w]

d

dw
Cp,q(w) = 0

(11)
which is the central result in our design procedure. As the
general identity (6) holds we obtain the expression

d

dw
Q(w) ≡

d

dw
Cp,q(w) =

M
∑

m=1

m a(m) Um−1(w) , (12)

which can be substituted into the differential equation (11)
in order to find relations among the unknown values of
the impulse response coefficientsa(m). By introducing the
substitution

α(k) = ka(k) (13)

we obtain

(1 − w2)
d 2

dw2
Cp,q(w) = (14)

=
M
∑

m=1

α(m)(1 − w2)
d

dw
Um−1(w)

= −

M
∑

m=1

m − 1

2
α(m)Um(w)

+

M
∑

m=1

m + 1

2
α(m)Um−2(w) .

Substituting expression (14) into the differential equation (11)
we can write it as

M
∑

m=1

p + q + 1 − m

2
α(m)Um(w)

+
M
∑

m=1

(p − q)α(m)Um−1(w) (15)

+

M
∑

m=1

p + q + 1 + m

2
α(m)Um−2(w) = 0 .

It should be satisfied for any power of the variablew. Since
α(0) = 0 andU−1(w) = 0 we can rearrange the equation (15)
into the form

M+1
∑

m=1

p + q + 2 − m

2
α(m − 1)Um−1(w)

+
M
∑

m=1

(p − q)α(m)Um−1(w) (16)

+

M−1
∑

m=1

p + q + 2 + m

2
α(m + 1)Um−1(w) = 0 .

Then the identity (16) provides a backward recursive evalua-
tion of the impulse response coefficients. Ifm = M + 1, the
first sum in (16) produces

p + q + 1 − M

2
α(M) UM (w) = 0 (17)

which can be satisfied by equation (10) only. Valuem = M
provides
(

p + q + 2 − M

2
α(M − 1) + (p − q)α(M)

)

UM−1(w) = 0

(18)
or

α(M − 1) = −2(p − q)α(M) , (19)

which is the initial condition for the backward recursion.
Comparing the expression (6) with (8) we conclude that
the highest power ofwp+q is accompanied by a coefficient
(−1)pMa(M)2p+q. The factor2p+q appears here due to the
Chebyshev polynomial expansion. It consequently gives the
initial value of coefficientα(M) needed in (18) as

α(M) =
1

2
(−1)p2−2(p+q)M

(

p + q
p

)

. (20)

The general backward recursion is based on a general identity
following from (16) which is concisely expressed by the
algorithm summarized in the Tab. I.

From the algorithm we are able to evaluate all the impulse
response coefficients except thea(0). This coefficient is ob-
tained from the unit value ofQ(w = 1) ≡ 1,

Cp,q(1) = a(0) +

M
∑

m=1

a(m) = 1 . (21)

So that

a(0) = 1 −

M
∑

m=1

a(m) . (22)
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TABLE I

BACKWARD RECURSION FOR THE IMPULSE RESPONSE COEFFICIENTS.

given p, q

initialization α(M) =
1

2
(−1)p2−2(p+q)M

(

p + q

p

)

α(M − 1) = −2(p − q)α(M)
body

(for k = M − 1 to 2)
M + 1 − k

2
α(k − 1) = (q − p)α(k) −

M + 1 + k

2
α(k + 1)

(end loop on k)
integration

(for k = M to 1)

a(k) =
α(k)

k
(end loop on k)

This recursion completes the analytic procedure of direct
design of FIR maximally flat filters. Note that the whole design
process is a recursive one and it does not require any DFT
algorithm nor we need any iterative technique.

The main disadvantage of these filters is that the estimated
filter order is approximately inversely proportional to the
square of the transition bandwidth [7]. The design procedure
usually leads to filters of much higher order than those
with equiripple frequency response. The economization of
Chebyshev polynomial expansion of the transfer function is
equivalent to the square windowing of a finite but large extent
impulse response [8]. For the maximally flat pseudoamplitude
we can write

Q(w) = a(0) +
L

∑

m=1

a(m)Tm(w) +
M
∑

m=L+1

a(m)Tm(w)

= Qr(w) +
M
∑

m=L+1

a(m)Tm(w) . (23)

Since |Tm(w)| ≤ 1, the reduced pseudoamplitudeQr(w)
satisfies the required filter specifications within the accuracy

δp, δs ≤ δe =
M
∑

m=L+1

|a(m)| . (24)

IV. F ILTER DESIGN, ABRIDGING

Despite of the fact that the degree equation is not available,
the parameters of the abridged filterswp, ws, δp andδs can be
estimated as a function ofM , L, p andq. From the differential
equation (11) the maximum of generating function (8) is found

wm =
q − p

q + p
. (25)

From (8) and (9) follows

C ′

p,q(wm) = (26)

= 2−(p+q+1)(p + q + 1)

(

p + q
p

) (

2p

q + p

)p (

2q

q + p

)q

and

Cp,q(wm) =

(

q

q + p

)q+1 p
∑

m=0

(

q + m
m

)(

p

q + p

)m

.

(27)

The estimated passband and stopband edges in thew-domain
are given by

wp ≤ wep =
1 − Cp,q(wm) + wmC ′

p,q(wm)

C ′

p,q(wm)
(28)

wes = −
Cp,q(wm) − wmC ′

p,q(wm)

C ′

p,q(wm)
≤ ws (29)

which are related to the frequency domain by relations

wep = cos ωepT , wes = cos ωesT . (30)

The ripple estimationδe is given by (24). We deal with the
abridging of the impulse response of the maximally flat FIR
filters leading to the maximum ripple filters only. This require-
ment reduces substantially the number of available abridged
filters. The standard abridging leads to a feasible FIR filter
with more general distribution of zeroes ofQ′(w). For the
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Fig. 2. Amplitude frequency responses|H(ejωT )| and |Ha(ejωT )| .

maximum ripple filters the derivation of the pseudoamplitude
Q′(w) exhibits zeros in−1 ≤ w ≤ 1 only. The abridging
process was investigated for flatness orders2 ≤ p, q ≤ 45.
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The ratio of the lengths of the maximally flat filter and the
first abridged maximum ripple filter(2M +1)/(2L+1) varies
between 1.7 and 11.

Due to the abridging process the deviation in the passband
and stopband is not symmetrically distributed along the unity
and zero level, respectively. In order to achieve symmetrical
deviation1± δp in the passband and±δs in the stopband, an
additional normalization of the impulse response is necessary.
Frequently the parameters of the abridged filters are very
closed to the optimal equiripple filters.
Example 1.
Consider the design of a maximally flat FIR filter with the
order of flatnessp = 10 in the passband andq = 5 in
the stopband. The length of the filter isN = 33. The
estimated edges calculated using (30) areωepT = 0.5046π
and ωesT = 0.7039π and estimation of the ripple limit (24)
gives δe = 0.0613. The impulse response of the filterh(n)
is given in the Tab. II. The amplitude response|H(ejωT )|
is shown in Fig. 2. The impulse responseha(n) is obtained

TABLE II

THE IMPULSE RESPONSECOEFFICIENTSh(n) - EXAMPLE 1.

n h(n)

0 32 0.000000
1 31 -0.000007
2 30 0.000027
3 29 -0.000009
4 28 -0.000214
5 27 0.000527
6 26 0.000235
7 25 -0.002856
8 24 0.003062
9 23 0.006313
10 22 -0.017165
11 21 0.000246
12 20 0.057800
13 19 0.046946
14 18 -0.081833
15 17 0.294600

16 0.597881

from the h(n) by abridging to the length2L + 1 = 9 and
consecutive normalizing (Tab. III). The frequency response
|Ha(ejωT )| (Fig. 2) of the abridged filter becomes rippled.
The actual edges areωpT = 0.4424π and ωsT = 0.7400π
and ripplesδp = 0.0260, δs = 0.0388. An equivalent optimal
equiripple filter was designed with the same specifications
2L+1, ωp, ωs and ratioδp/δs . The impulse responsesha(n)
and hopt(n) of the abridged filter and the optimal equiripple
filter are compared in Tab. III.

TABLE III

COMPARISON OF THEIMPULSE RESPONSECOEFFICIENTS.

n ha(n) hopt(n)

0 8 0.046642 0.046645
1 7 -0.048497 -0.048496
2 6 -0.081303 -0.081305
3 5 0.292691 0.292696

4 0.596549 0.596547

Example 2.
Consider the design of a maximally flat FIR filter with the
order of flatnessp = 43 and q = 19. The length of the
filter is N = 127. The estimated edges (30) areωepT =
0.5751π and ωesT = 0.6756π. The ripple limit (24) is
δe = 0.0274. By abridging of the impulse response to the
length2L+1 = 19 and consecutive normalizing (ha(n) in the
Tab. IV), the frequency response|Ha(ejωT )| becomes rippled.
The actual edges areωpT = 0.5452π and ωsT = 0.7038π
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Fig. 3. Comparison of frequency responses 20log|Ha(ejωT )| and
20log|Hopt(ejωT )| .

and ripplesδp = 0.0116, δs = 0.0099. The logarithmic
frequency response 20log(|Ha(ejωT )|) of the abridged filter
is compared in Fig. 3 to the logarithmic frequency response
20log(|Hopt(e

jωT )|) of the optimal equiripple filter with the
same specifications2L + 1, ωp, ωs and ratioδp/δs.

TABLE IV

THE IMPULSE RESPONSECOEFFICIENTSha(n) - EXAMPLE 2.

n ha(n) hopt(n)

0 24 -0.008575 -0.010018
1 23 0.004643 0.004415
2 22 0.009936 0.009484
3 21 -0.017589 -0.017461
4 20 0.000785 0.000953
5 19 0.028308 0.028408
6 18 -0.029114 -0.029325
7 17 -0.018917 -0.019107
8 16 0.070311 0.070692
9 15 -0.039266 -0.039268
10 14 -0.108107 -0.108273
11 13 0.292790 0.292453

12 0.624213 0.623603
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