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An Analytical Procedure for Critical Frequency
Tuning of FIR Filters

Pavel Zahradnik and Miroslav ViIcek

Abstract—A novel analytical procedure for the tuning of a(k) the a-vector of the filter. The transfer function of the
finite-impulse response (FIR) filters is introduced. The tuing filter is
procedure adjusts a single frequency of the frequency respse

to the desired value while preserving the nature of the filterThe 2n —k
impulse responses of the original and of the final filter are riated H(z) = Z h(k) z
by the transformation matrix. Two examples in the analyticd k=0
design of notch FIR filters demonstrate the usefulness of the n 1
proposed tuning procedure. =z""|h(n) +2 Z h(n £ k) 3 (zk + z_k)
Index Terms—Equiripple filter, finite-impulse response (FIR) . k=1
filter, maximally flat filter, notch filter, tuning. _ _
= 27" a(k) Te(w) = 27"Q(w) )

k=0

. INTRODUCTION where Ty (w) is the Chebyshev polynomial of the first kind.

RECISE tuning of the frequency properties is an usefiihe function N

operation in the design of digital filters. It can replace _
the design of the filter from the scratch by the reusing of the Qw) = ];)a(k) Te(w) 3
impulse response of the available filter. Adaptive filtering
one of the applications. Further, the tuning is useful in tH&Presents a polynomial in the variahte= 3(24+27") which
analytical design of digital FIR filters where the availabl@n the unit circlez = ¢/“" reduces to the real valued zero
critical frequencies are usually quantized [1], [2], [3]ni§ Phase transfer function (ZPTE)(w) of the real argument
guantization prevents such analytical procedures from the
design of filters with arbitrarily specified critical frequees. w = cos(wT). 4)
Hence the analytical design combined with the tuning of
the filter represents a powerful design tool. In this brief we
present a fast versatile tuning procedure which adjustsgesi
frequency of the frequency response of the FIR filter to Ill. DIFFERENTIAL EQUATIONS
the specified value while preserving the nature of the filter,
e.g. maximally flat, equiripple etc. Our tuning procedure is
based on the expansion of the Chebyshev polynomial of t
transformed argument into the sum of Chebyshev polynomi
resulting in the transformation matrix. The impulse resmn

e Chebyshev polynomial of the first kirfd, (z) fulfills the
erential equation

dQTk (I) di (SC)

2 2 _
of the final filter is obtained from the impulse response of the (1-2%) a2z T ar +ETi(z) =0 . (5)
original filter by applying of the transformation matrix. We have derived the differential equation
! 2
Il. ZEROPHASE TRANSFERFUNCTION (1 _w2+2%(1 _w))diiJrgw) (6)
w
We assume the impulse resporgé) with odd lengthV = N dF
: +(w) 2 _
2n + 1 and with even symmetry —(w + T) T +E°F (w)=0

a(0) =h(n) , a(k) =2h(n+k)=2h(n—k),k=1..n. forthe polynomial

(1) - ,
The vectora(k) is more useful for further manipulations than Fy(w) =Ti(dw +X) Y

the corresponding impulse resporigé). For brevity we call and the differential equation

’
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TABLE |
RECURSIVEALGORITHM FOR THE EVALUATION OF THE COEFFICIENTSay, () OF THE TRANSFORMATIONMATRIX A .

given k (integer value), 0 < A < 1 (real value)
initialization A =1-21
ap (k) = A\F
body
(for p=-3..k—4)
?k(k —p—4)=

=2 [ 3)(2k = = 3) = Ak = = 32k = 20 = D) =i =3
) +2%/(k—u—2) arp(k—p—2)
2 [(u+ )@k == 1) = Ak = = Dk - 2= )] ar(b - = 1)
+u(2k — p) ap(k — p)

/(w2 —p—4)
(end loop on )

where the real values and\" are related by can be rewritten in the matrix form
AN =1 (10) Q(w) = [a(0) a(1) --- a(n)] x (14)
[ao(0) 0 0 0 0 1 [To(w) ]
041(0) 061(1) 0 0 0 Tl(w)
O[Q(O) 062(1) 062(2) 0 0 TQ(’LU)
IV. TRANSFORMEDZERO-PHASE TRANSFERFUNCTION az(0)  a3(1) a3(2) «as3(3) 0 X | Ts(w)
The purpose of the frequency transformation is to map th_(%;)zn(O) an(l) an(2) an(3) --- .an(n) _.Tn(w)
critical frequencyw,, T of the frequency response of the filter ) )
to the desired valuesyT. The mappingu,,T — woT in the =a AT. (15)

frequency domain is equivalent to the mapping < wg in ) i i )
the w-domain. Due to (4) the shift in both domains occurs i\Ve call the low triangular matrix the transformation matrix.
opposite directions. We propose the transformed ZPTFsein t‘ﬁhe vectora, of the transformed filter is given by the product
form of the vectora of the original filter and the transformation

_ N )\*wm_l 1 matrix A
TEAWAEA L A= T (11) w=a A . (16)

if wy,T' < woT and There are two transformation matrice$, and A_ cor-

/ W + 1 responding to the transformations (11) and (12). The fast
T=Aw—A , A= wo + 1 (12)  evaluation of the coefficientsy,(m) of the transformation
matrices is essential in the adaptive filtering. Our evébmat

if woT" < wn,T'. The procedure provides the impulse respongkqcequre results from the differential equations (6) cf&he
coefficients for a FIR filter with following properties. corresponding polynomials (7), (9).

« The frequencyw,,T" to the specified value)yT' is ad-
justed.
« The maximal attenuation in the passband(s) and the V. EVALUATION OF THE TRANSFORMATION MATRIX

minimal attenuation of the StOpband(S) of the filter is Based on the differential equations (6) and (8) we have

preserved. derived fast procedure for the evaluation of the coeffigient
« The width of the bands of the filter is broadened. ak(m) of the transformation matriceA+ and A_. The fast
algorithm for the evaluation of the coefficients of the tifans
The tranformed ZPTFs mation matrix Ay is summarized in Tab. |. Its derivation is
" N X presented in Appendix. The evaluation of the transfornmatio
_ _ matrix A_ is analogical. Both matrices differs by the signs of
Qu(w) = kz:(:) alk) Ti(@) = ;:%a(k) mz::o (1) Ton () the "odd” coefficientsyy (k — u — 3) anda(k — p — 1) only

(13) - see Tab. Il
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TABLE Il
RECURSIVEALGORITHM FOR THE EVALUATION OF THE COEFFICIENTSak (m) OF THE TRANSFORMATIONMATRIX A_.

given k (integer value), 0 < A < 1 (real value)
initialization A =1-21
ap (k) = A\F
body
(for p=-3..k—4)
?k(k —p—4)=

2 |(u3)(2h — = 3) = A-(h == 3)(2k = 20— )| ane — = 3)
) +2%/(k—u—2) arp(k—p—2)
~2 [ D@k = 1) = 3k = = D@k =20 D) == 1)
+u(2k — p) ap(k — p)

/(w2 —p—4)
(end loop on )

TABLE Il
COEFFICIENTS OF THEIMPULSERESPONSES
0
a=-3.0103 [dB] K h(k) ht(k)
-100 A 24 94 -0.000002 -0.000002
25 93 -0.000002 -0.000002
26 92 0.000002 0.000000
20| | 27 91 0.000012 0.000009
g 28 90 0.000023 0.000021
= 29 89 0.000020 0.000023
3 30 88 -0.000024 -0.000012
I 0 R 31 87 -0.000112 -0.000093
g 32 86 -0.000177 -0.000171
] 33 85 -0.000081 -0.000115
34 84 0.000281 0.000201
-4or 1 35 83 0.000758 0.000687
36 82 0.000819 0.000863
37 81 -0.000152 0.000072
sol | 38 80 -0.002046 -0.001752
39 79 -0.003358 -0.003297
40 78 -0.001783 -0.002222
i2 76 | 0005031 | ooos5al
-60 L L L L L L L L
o1 0z 08 04 08 06070808 43 75 0.008551 0.009125
44 74 -0.001977 -0.000433
! . , 45 73 -0.017327 -0.016011
Fig. 1. Amplitude frequency respongé log | H (e7“T)| [dB]. 16 72 -0.023187 -0.023566
47 71 -0.007622 -0.009884
48 70 0.023666 0.021252
49 69 0.044852 0.044606
50 68 0.029660 0.032152
VI. EXAMPLES OF TUNING 51 67 -0.019971 -0.016816
2oon | s | se
The proposeq tuning precedure represents a versat_llerde3|g 2 e 0000857 000533
tool. It is especially useful in the design of notch FIR fifters 55 63 0.073377 0.072340
: ; o e . 56 62 0.091085 0.092339
a n_otch filter is primarily specified by one critical frequgnc 57 61 0030758 0032318
which is the notch frequency. In [3] we have shown that 58 60 -0.060246 -0.060170
59 0.896722 0.895847

the available notch frequencies are quantized in the &nalyt
design of maximally flat and equiripple notch FIR filters. §hi
drawback can be eliminated by the proposed tuning procedure
as shown in our examples.

Example 1: Design the maximally flat notch FIR filter will be tuned using the proposed tuning procedure in order
specified by the notch frequenayyl” = 0.3 7 and width of to get the specified notch frequeneyT = 0.3 7. Because
the notchband\wT = 0.13 7 for the maximal attenuation in of w,,T < woT we evaluate (Tab. 1) the transformation
the passbands = —3.0103 dB. matrix A, for A = 0.9868 (11). We get the tuned filter

Using the analytical design procedure [3] we get 59, with parametersvT = 0.37 and AwT = 0.1304 7 for
p = 12 and ¢ = 47. The designed filter of the lengtha = —3.0103 dB. The actual width of the notchband exceeds
N = 119 coefficients with "quantized” notch frequencyby 0.28% the specified value. The impulse resporigé)
wmT = 0.2979 7 and AwT = 0.1293  for « = —3.0103 dB  of the "quantized” filter and the impulse responsgk) of
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TABLE IV

COEFFICIENTS OF THEIMPULSERESPONSES

K h(k) ht(k) |
0 72 0.016832 0.011622
1 71 0.004953 -0.005198
2 70 -0.002260 -0.009660
3 69 -0.009076 -0.010249
4 68 -0.008700 -0.003681
5 67 0.000117 0.006768
6 66 0.010632 0.013012
7 65 0.013100 0.008921
8 64 0.003678 -0.003396
9 63 -0.010795 -0.013938
10 62 -0.017533 -0.012654
11 61 -0.009034 0.001287
12 60 0.009012 0.017271
13 59 0.021195 0.021210
14 58 0.015517 0.007859
15 57 -0.004980 -0.013249
16 56 -0.023239 -0.024485
17 55 -0.022375 -0.014929
18 54 -0.001244 0.009158
19 53 0.022942 0.028084
20 52 0.028636 0.024800
21 51 0.009196 0.000144
22 50 -0.019871 -0.026360
23 49 -0.033269 -0.032071
24 48 -0.018035 -0.010712
25 47 0.014008 0.021071
26 46 0.035383 0.036681
27 45 0.026667 0.021933
28 44 -0.005787 -0.012097
29 43 -0.034396 -0.037428
30 42 -0.033926 -0.032360
31 41 -0.003929 -0.000239
32 40 0.030153 0.032628
33 39 0.038727 0.038693
34 38 0.013946 0.012424
35 37 -0.023124 -0.024678
| 36 0.933816 0.932507 |
0
—10F
E—ZO r
%
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Fig. 2. Amplitude frequency respongé log | H (e7“T)| [dB].

AwT = 0.075 = for the maximal attenuation in the passbands
a=—0.5dB.

Using the analytical design procedure [3] we get=
0.665619, n = 36 , p = 11 and ¢ = 25. The designed
filter of the length N = 73 coefficients with "quantized”
notch frequencyw,,7 = 0.30647 and AwT = 0.0757
for a,ee = —0.4584 dB will be tuned using the proposed
tuning procedure in order to get the specified notch fre-
quencywoT = 0.3w. BecausewyT < wy,T we evaluate
(Sec. V) the transformation matrid_ for A = 0.9898 (12).

We get the tuned filter with parameteigT = 0.37 and
AwT = 0.07797 for a = —0.4584 dB. The actual width

of the notchband exceeds By99% the specified value. The
impulse responsk(k) of the "quantized” filter and the impulse
responseé:; (k) of the tuned filter are summarized in Table IV.
The amplitude frequency respongelog |H (e/“T)| [dB] of

the tuned equiripple notch FIR filter is shown in Fig. 2. The
detailed view of the passbands of the "quantized” and of the
tuned filter is shown in Fig. 3.

—04

20log [H(E“ )| [dB]

Il Il Il Il Il Il Il Il Il I
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
wT/m

Fi

g. 3. Passbands of the "quantized” (thin line) and of theetufilter.

VII. CONCLUDING REMARKS

In this paper we have presented a fast analytical tuning
procedure for FIR filters. The analytical tuning procedwge i
based on the differential equation of the transformed Cheby
shev polynomial. Two examples demonstrate the efficiency of
the tuning procedure in the design of FIR filters.

the tuned filter are summarized in Table Ill. Because of VIII. A PPENDIX- DERIVATION OF THE ALGORITHM
the marginal coefficients of both impulse responses are less

than 1076 for & < 24 and k& > 94, only the 71 central

In order to derive the recursive algorithm (Tab. I) for the

coefficients are presented. The amplitude frequency respoRvaluation of the coefficients(m) of the transformation
20 log | H(e7*T)| [dB] of the tuned maximally flat notch FIR Matrix A, we insert the polynomial

filter is shown in Fig. 1.

Example 2: Design the equiripple notch FIR filter specified
by the notch frequencyy7" = 0.3 7, width of the notchband

k
Fye(w) =Te(hw+X) = > ap(m)Tn(w)  (17)

m=0
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into the differential equation (6). It yields 0 = Up(w) x
by k2 — (k- 1)
k l——k(2k—1)ak(k)+(f)ak(k—1)]
> ar(m)(k* = m?) T (w) (18)
m=0 0= kal(w) X
1k ’
A Ty, (w)  dTy, (w) oA 2 12 _
5 2 aulm) 20— Pl ) o) + (0 (= 1)) e = )
A k2 — (k —2)?
Because of k- D@k =3)an(k—1)+ % k- 2)]
2T (w) = Uy (w) — Upp—a(w) (19)
2wU—1(w) = U (w) + Upp—2(w) (20) The first identity suggests that.(k) can be chosen arbitrarily.
Due to the the expansion
we obtain T(dw + ) = Xowk + .. = MNTp(w) + ... (23)
k s o we put
> ak(m)k 5 LI (21) o (k) = A (24)
m=0

[Unt1(w) 42U (w) — 2Um—2(w) — Upp—3(w)]

A
—|—T mz_oozk(m)m X

(—(2m — 1)Uy (w) — 201 () + (2 + 1)Uy o (w)] = 0

whereU,, (w) is the Chebyshev polynomial of the second kind™"*

We write the equation (21) explicitly as

S Lt @)
, [Uk+1(w) + 2Uk(w) — 2Uk—2(w) — Ug—3(w)]
+%o¢k(k:) k x
[=(2k = 1)Uk(w) — 2Uk-1(w) + (2k + 1)U —2(w)]
+ai(k— 1)w X

2
[Uk(w) + 2Ux—1(w) — 2Uk—3(w) — Ug—s(w)]

+%ak(k —1)(k—-1)x

(~(2k = 3)Ui_1(w) — 20y a(w) + (2k — 1)Ui_s(w)
+ai(k— Q)W X
[Ug—1(w) 4+ 2Uk—2(w) — 2Uj_4(w) — Ug—5(w)]

’

—I—%ak(k— 2) (k—2) x

[—(Qk — 5)Uk_2(w) — 2Uk_3(w) + (2k — 3)Uk_4(w)]
+...

Than, we collect the coefficients associated with the dgl

scending degree of the Chebyshev polynomidls(w) and

The other coefficients are evaluated from the above idestiti
recursively as

’

ok —1) = 2% kax(k) (25)
or
(k—2)= (26)
N Bz - ; N %%2_ 3] ok 1)+ %2/{2ﬁ gek(k) -
Finally for a general valuen = k — ;» we obtain
ap(k —p—4)(p+4)2k —p—4) = (27)

—2

<u+3><2k—u—3>—%(k—u—mk—m—?)]x

X ap(k—p—3)

A/
+2T(k —pu—=2agk—p—2)

+2 (u+1)(2k—u—1)—i(k—u—l)(2k—2u—1)] X

A

Xap(k—p—1)
+u(2k — p)au(k — p)
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