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Zolotarev Polynomials and Optimal FIR Filters

Miroslav VI¢ek and Rolf Unbehaueffellow, |IEEE

Abstract— The algebraic form of Zolotarev polynomials re- a Zolotarev polynomial. They have introduced polynomidls o

fraining from their parametric representation is introduced. A degreeN with L zeros in the intervala, 3) and N — L zeros

recursive algorithm providing the coefficients for a Zolotarev in the interval(—1,1) in a standard parametric form
polynomial of an arbitrary order is obtained from a linear ’

differential equation developed for this purpose. The correspod- ) 5 L

ing narrow-band, notch and complementary pair FIR filters sn®(ulk) + sn (N K(x)[k)

are optimal in Chebyshev sense. A recursion giving an explicit r = 7 3)
access to the impulse response coefficients is also presented. 8om sn2(ulr) — sn2(— K(k)|k)

design examples are included to demonstrate the efficiency of the

presented approach. H( K(r)) N

L U — K
Index Terms— Zolotarev polynomials, optimal FIR narrow fy.o(ulk) = (=1 N (4)
bandpass and notch filters, impulse response, recurrence forna ’ 2 H(u+ £ K (k)
I N

H — K

. INTRODUCTION + (u+ N ()

URING the period 1868-1878 E. Zolotarev stated and H(u—% K(k))

solved four problems in approximation theory, two con-
cerned of polynomials and the other two of rational funciion I
The solution of the third problem was introduced in filtewhere H(u — — K(x)) is Jacobi's eta functionsn(u|x) is
theory by W. Cauer in 1933. The first problem concerns ghcobi’s elliptic function andK (k) is the complete elliptic
the polynomial of the form integral of the first kind of modulus.
n n—1 n—2 Having found satisfactory results using numerical algo-

f(@) = 2"—noa" " +f(n=2)a" .. +B1)2+0), (D) \ims for the involved special functions - theta, Jacokia
which deviates least from zero in a given interval wherss and zeta functions X. Chen and T.W. Parks [3] emphasised
a given real number. I& < tan?(7/2n), the solution is given "E.V. Voronovskaya [11] demonstrated a way to synthesise

in terms of Chebyshev polynomials such polynomials using a linear functional method. In addit
! B she gave an example of synthesising the Zolotarev polyriomia
f(z) = i(1+0)"Tn (x U) , (2) of degree three and derived the analytic formulas for its

2" l+o coefficients. Unfortunately, the general practical altpon is

while for & > tan2(7r/2n) no such solution exists. Zolotareystill not available.”
derived the general solution in terms of elliptic functiomge ~ An efficient evaluation of Zolotarev polynomials remains a
application of that class of polynomials in filter theory had Vivid question in spite of their 120 years history. Receritly
wait till 1970 when R. Levy studied odd Achieser-Zolotarel/] I. W. Selesnick and C. S. Burrus quoted that a subset of
polynomials with the application to the quasi-lowpass fiite maximal ripple bandpass filters can be found using analytic
In his Comp|ete treatise [5] he pointed out that "the mo@ethOdS inVOIVing Zolotarev pOIynomiaIS as described by X.
satisfactory method for forming a Zolotarev function would@hen and T.W. Parks.
be from closed-form expressions for the coefficients, omfro In our paper we develop a completely analytic procedure for
recursion formula. No such formulas have yet been found.®evaluation of the Zolotarev polynomials [3] which replaces
Later, in 1986 X. Chen and T. W. Parks generaliséieir standard parametric representation. We use a sfightl
Zolotarev polynomials for the design of optimal FIR narrowdifferent notation for Zolotarev polynomiak,, ,(u|x) em-
band filters exhibiting equiripple behaviour over the stophasising thap counts the number of zeros right from the
bands. They have extended the original closed form solutiBfaximum and; corresponds to the number of zeros left from

to a more general polynomial and begun to call this extensigie maximum, ana = p+ ¢ is the degree. We also introduce
the independent variable which is confined to the intervals
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whereuy = LK(/-;). We have derived a linear differential

equation from which a recurrent formula for coefficients- fol
low. The algorithm is also extended to the Chebyshev polyn
mial expansion of Zolotarev’s polynomials which is impaotta

for direct computation of the impulse response coefficients ,, — 2cn?(ug|w) —1=1—2sn?
Consequently, it replaces the FFT algorithm required in the

analytic design of optimal narrow band FIR filters [3].

Il. DIFFERENTIAL EQUATION OF APPROXIMATION AND

FUNDAMENTAL PROPERTIES

The extremal values of Zolotarev polynomié), ,(u|«) of
degreen = p+q alternates between -1 and #1+1)-times in
the interval(w,, 1) and(¢+ 1)-times in the interva(—1, w;).

By inspection the Zolotarev polynomial of Fig.1 satisfies th

differential equation

da

dw)2=n%1—ﬂxw—wmf.

7)
This equation (7) expresses the fact that the derivag(je
w

(1)) w-ws)

Fig. 1. Zolotarev polynomiaks o (|0.78) of degree 14, withw, = 0.2319,
wm = 0.4292 andwy, = 0.6075

does not vanish at the points = +1, w,, w, where f = %1
for which the right hand side of eq. (7) vanishes, and th

w = w,, IS a turning point corresponding to the local extrema

at which f # +1. We will call eq. (7) the approximation

718

Under this transformation the edges andw, correspond to

2 —1=2sn2 [ —LK(kr)r | -
2cd*(uglk) —1=2 (p+qK( )|) 1, (9

o-Wp =

(22K lk) o

while the valuew,, is subject to the solution. The conformal
transformation (8) suggests the parametrisation in thierdif
ential equation (7)

1 ﬁ B W — Wy, d7w (11)
ny/f2 —1du N \/(w2 — 1) (w —wp)(w — ws) du '
Using the inverse transformation to (8)
sn?(u) = sn?(ug) L+ w (12)
W — W
and combining with (10) and (11) we obtain
wo sn?(ug)en?(uo)
T = —4sn(u)en(u)dn(u) (52 (w) — 512 (1) )2 (23)

dn(up)
w2 = 1w = ) =),
Then substituting
fw) = coshn® (14)
equation (11) becomes
@ dnfu)
du — sn(ug)en(ug) (wnm —w) (15)
dn(ug)
Jen(

., sn(uo)en(uo)dn(uo)

sn2(u) — sn?(ug)

The eq.(15) can be integrated by using Jacobi's expression
[12] for the elliptic integral of the third kindI(u,ug|x), the
theta functionO(u) and zeta functior (ug|x)

equation as its form indicates the behaviour of a Zolotarev

polynomial. In oder to solve the differential equation (7¢ w
recall conformal transformation [2], [5] from the plane to
the v plane

sn?(u)en?(ug) + en?(u)sn?(uo) .

(8)

v sn?(u) — sn2(uop)

1. O(u—ug)
II(u, up|k) = 5 In O+ uo) + uZ(up|k) . (16)
In view that
O(u—up+1iK(k')) H(u—ug)
- = a7
O(u+up +1i K(xk'))  H(u+ ug)
we obtain
dn(up) H(u — uop)
D = m—Ws)—In ——~= —2uZ .
usn(uo)cn(uo) (wm=w;)=In H(u+ up) uZ (uolx)
(18)
Provided we assign the first term to Jacobi’'s zeta function
Z('LL(]) d ( )
at n(ug
27 = — 1
(o) sn(ug)en(ug) (W = ws), (19)
it finally reduces to
. H(u+wu)
q)ilnH(u—uo). (20)

From eq.(19) the position of the maximum valug, is found

as
sn(ug)en(ugp)
m = S 2 - 7 /7 N
v Wa dn(ug)

Z(u). (21)
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In order to find the argument,, to which the maximumy,, wherev = 5 KW u. Then the argument (27) can be written
belongs we write (8) as as (k)
Wi + 1 P r _1 1
12 (| 0) = = s (- K (w) @) Ay = L[ 3“@>+HW+§KWD}
W — Ws n 2 2 [Hu+ 35 K(k) H(u-3; K(k))
sn(2 K)en(2 K)dn(2 K) +sn?(2 K)Z(2 K) L[ (w—T) Oa(v—T)
(2 K 5 o+ T }
(% K) 2 a0 — ) " Gy(v— 1)
As for u,, = o,, +1 K(x') is 17 _1lk
(K) 1 \/ysn(u 2 (k)|K) (30)
5 1 21 en(u— 5 K(k)|k)
sn (Uf,n|:‘<f/) = YA (23) 2
K2sn?(om| k) 1 en(u— 3 K(k)|k)
we get the final expression K sn(u— 3 K(k)|k) ]
. 1 Wy, — Wy The pair
Om = F <arcs1n <nsn(£ K)\ o + 1 ) |/<a) , (24)

where F'(¢|x) is the elliptic integral of the first kind. With
substitution (14) we arrive at the standard result (4)

n

(c1p [ (H@=2 K@)
Zy(ulk) ol | e v
Hu+ 2 k)"
+ P
H(u— = K(x))

3
The factor(—1)P appears here as the generalised Zolotar

polynomial alternategp + 1)-times in the interval(w,,1)
[3]. Using (14), (20) an arbitrary Zolotarev polynomial caa

1
alternatively expressed in terms of the Chebyshev polyabm
0

Zy.o(ulk) = (~1)PT,, (A% (u|,<)) — cosn®,

(26)
provided that we define the argument as
1 [H(u—up) H(u-+wug)
» =cosd = . (27
Az (ulr) = cos 2 {H(u—ﬁ—uo) H(u — ugp) 27)

IIl. ALGEBRAIC FORM THROUGH THEFIRST PRINCIPLES

of equations (28) and (30) already indicates that
the

9

8

2 \

-1 L
0 0.1

0.2 0.3

Fig. 2. Symmetrical Zolotarev polynomiakz 7(u|0.7575) of degree
14, with wsT = 0.5674w, w,,T = 0.57 and wpT = 0.43267 and

corresponding responsié’ (e/«) of the Chebyshev window function with
woT = 0.13477 plotted versus the normalised frequency - cf. Tab. I.

between the variables and.A. an algebraic relation exists

Using Gauss’ transformation for the elliptic functions [4]
From the set of parametric equations (8), (26) and (27) we

derive an algebraic form of the simplest Zolotarev polyrami
Zpp(ulk) which is specified by the symmetrical distribution
of the zeros in the two disjoint intervals-1, —w,) U (w,, 1).
Here and in the following, wherever the modulkds to be
emphasised we use the notation(u|x).

In this particular case the variables, = 1 K(x),
sn(: K(k)|k) = (1 ++)"! and

sn? (ulw) (1 — sn®(5 K(k)|K)) + sn?(5 K(x)]

sn2(ulk) — sn2(% K(k)|x)
1-(1- K')sn?(u|k)
1— (14 r)sn?(ulk)

2

1

K)

2

(28)

1 /
v o= Rk, (31)
2V
" 1+ k7
and then letting
z=jly—j K(K)) (32)
we obtain the simplified parametric representation
w = dn(ylk), (33)
Ay en(ylk) .

Due to this mapping of the independent variablehe edges

are related to the new modulus as
are used. Next, we use the standard notation [4] for the

9 - functions which assigns for the eta function

H(u)
H(u+ K(k))

’191 (’U) 5

U2 (v),

wp = —ws =k (34)
the standard identity for Jacobi’s elliptic functionsid®

en®(ylk) = dn®(y|k) — K sn?(ylk) , (35)
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TABLE |
THE CHEBYSHEV WINDOW FUNCTION AND CORRESPONDING NARROWBAND FIR FILTER BASED ON THEZOLOTAREV POLYNOMIAL

Window Function FIR Narrow-Band Filter
M 1 2M
W(ej“’) = Z wM(n)efj"” =Tom (ECOS%) H(ej“’) = Z h(n)eij"w
n=—M n=0
= Tom (sn(ulk)) = e IMY ()M Ty (en(ulk))
; 2w? —1— k"2
=Tonm (%) for k = COS? = efﬂww(—l)ijAj <wl_k/2)
implicit definition of the windoww s (n) the transfer functionff (e/«)
Ton (sn(ulk)) (=D)MTopr(en(ulk)) = (=1)MTar(2en® (ulk) — 1)
202 — k? 1+ k2 — 2w? 202 — 1 — k2
Tom (%) =Ty ( i 2 ) T <—i_1_]<:,210> = (-)M Ty (ujl_k,z>
2w =1 E2+E?2=1
wpr(m) = h(M —m) = h(m)
(D" (M 2 o~ (D) (M 2
1" +n n —2n m —-n" +n n 2y—n
(71)MMZ]\/[+TL(M—7L)(n—m)k2 (=1) MZM_Fn(JVI—n)(n—m)(likQ)
for |m|< M form=0,1,...M
the argumentA? (y|k) and the independent variabte are Z, ,(w)
. 2
simply related as 20— 1
w%:k/2+k2COS2LW p=1...p. (38)
2./42( |]€) 1_211)2—1—]‘(1/2 (36) ! 4p
3V N 1— k72 The factorized form of the symmetrical polynomial is then
Finally, the algebraic form of the symmetrical Zolotarev (—1)P22r=1 p ) )
polynomial Z,, , (u|r) reads Zpp(w) = 20 [T —w). (39)
pu=1
2w? — 1 — k2
Zutw) = (-1rr, (P ) @

This polynomial is equivalent to the implicit definition die
Chebyshev window function [9] - Tab. I. i )
Though we have demonstrated that replacing of the standard? Order to find an algebraic form for Zolotarev's polyno-
parametric representation of Zolotarev polynomials (&), (mlals from the f|r_st pnnupleslwe gttempted to express the
by an algebraic form is possible, for the general p0|yn(§1_rgument (27) which can be written in terms of theta funcion
mial Z, 4(u|x) this would be a formidable approach. W 29 170 0
should have a unified parametrisation of both the argument A (ulr) = = 1v=2o) , O1(v+vo)
Az (ulk) - €q.(27) and the independent variahie- eq.(27) ! 2 [01(v+wo)  01(v—0)
in terms of Jacobi's elliptic functions. This means that wthrough the independent variable (8) which can be also

should look for expressions in which ratios dffunctions written in terms of theta functions

as in eq.(27) are given by elliptic functions. Consequeritly 11— dn(u + uo|k)dn(u — ug|r)
requires general modular transformations of Jacobi'ptdli ¥ = 3
functions andy— functions which belong to a rather difficult ;9
part of mathematics. But the results will be rewarding. Here = Yav + U0)194(1;— vo) — K703 (v + o)Us(v — v)
after a modular transformation we have obtained simplified #2001 (v + vo)t1 (v — wo)

parametric equations of the form (33) which as a result gifgue to the properties of theta functions the argumép{u|x)
symmetrically distributed zeros of the Zolotarev polynami (40) and the independent variable (41) have the same

IV. ALGEBRAIC FORM USINGLIOUVILLE'S THEOREM

(40)

41
k2 sn(u+ ug|k)sn(u — ugl|k) (41)
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poles. This consequently means that any polynomialdin ;5
remains a polynomial in the variable. For a different ratio
of zerosp/q = 1/1,1/2,1/3,... in the two disjoint intervals
(—1,ws) U (wp, 1) we get the polynomials

(1) Zpp(uls) = T2p(~’45( ulk)) = Tp(T2(~A%)) )
(=1)PZp2p(ulr) = T3P("4% (ulk)) = Tp(TB(A%)) ) 05
(1 Zpspluls) = Tan(As(uls)) = T,(Ti(A1)),

and the search for an algebraic form of a Zolotarev pol
nomial is reduced to the investigation of an algebraic for
of one of theinner polynomials T5(Ay ), T5(Ay), ... only.

The inner polynomials are just generators ‘of an arbitra
Zolotarev polynom|aInNow we form the ratio of two polyno- 0°

mials Tn(A%(u\ﬂ))/Zb(u)w“ of the same degree. This

=0
expression is an elligtic function whose numerator and deno e
inator have the same poles and the same zeros. According w
Liouville’s theorem [12] this ratio must be constant. Fig. 3. PolynomialTs(A
From the first principles it is also possible to evaluate the, = 0.7077.

coefficientb(n) accompanying the highest power ofin the
general Zolotarev polynomial. If we use the representg26ij
it turns out that the limitw — oo is equivalent to the limit
v — vg and then

1 0 1 b(3) 1
o Ta(AL) 1 (04(200) | 93(200) " wd wr—1 w, b(2) | =| -1 |, (48
b(n) = lim — = = 2{ 9,000 T 05(0) } (42) |:w‘ : b(1) 1

= 3 {194(21)0) 1+ dn(2u0|n)}} , which can be easily inverted giving the solution in terms of

94(0) K K
wy =1—2sn? () andw, = 2cd? () -1
where2vy = w/n. This expression again confirms that for the 3 3

(ulk)), with k = 0.85 with ws = 0.2369 and

1
3

can be written in the matrix form

o wn W

general Zolotarev polynomial the evaluation of the coedfits _ _

is closely related to modular transformationsiffunctions. BA = (v, wg)(l J;w”ws) (1 —wp) = (1= wi),

We have employed Liouville’s theorem and the values of t 2)A = wpws‘(w —wp) — wp(1 - ) —wy(1—w}),

highest coefficients in the evaluation of an algebraic fofm &(1)A = w) — w) + wiw?(ws — wy) +2 — wy — w?,

the polynomialsl(Ay ), T5(A1) andTy(A: ). We now show A = —wyws(w? — w?) + wy(l — w?) + wy(1 — w?).

how the third order Zolotarev ponnomlaf is developed. Firs P ) ? Ur °

assume the identity where A = (ws — wy,)(1 — w?)(1 — w3) is the determinant
of the matrix in eq. (48). It is worth noticing th&, ; (w) =

4A% (ulk)) — 3A. (ulr)) Zo(—w). '
€ —1 @3 “

In the case of the fourth order Zolotarev polynomial we

b(3)w3 + b(2)w? + b(1)w + b(0)
investigate the behaviour of the expression
and then by investigating the behaviour of both polynomials g P

- cf. Fig. 3 - in specific points we write the set of algebraic 8A‘% (ulk)) — 8,42% (ulg))+1
equations @ T 03w T 0@ Fow o) @9
at w=-1 4A — SA% =-1, (44) Asinthe previous case we obtain the set of algebraic equsatio
b(3) +b(2) - b( ) +b(0) = —1, AL —8A3 +1=1, (50)
at w=w, 44} 34y = (49) b(4) — b(3) + b(2) — b(1) + b(0) = —1,
b(3 )w +b(2)w? ( Jws +(0) = -1, 8AT —8A3 +1=-1, (51)
_ 3 - 1 1
at w=w, 44 -34; =1, (48) b(4)w! + b(3)w? + b(2)w? + b(1)w, + b(0) = —1,
b(3 ) +b(2)wy + b(1)w, + b(0) = —1, SAY —8A2 +1= -1, (52)
at w=1 44} -34; =1, 47 b(A)w? + b(3)w? + b(2)w? + b(1)w, + b(0) = 1,
b(3)+b() b(1) +b(0) =1. SAL — 842 +1=1, (53)

Observing thab(2) 4 b(0) = 0 the set of equations (41) - (44) b(4) +b(3) +b(2) + b(1) + b(0) =



IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 47, NO. 3, MARCH 19 722

TABLE I
COEFFICIENTS OF THE LOWEST ORDER.OLOTAREV POLYNOMIALS Z1 pn—1(w) = b(n) :1:0 B(m)w™
normalised
coefficients n=2 n=3 n=4

w | (e (s) | (o) | -2l

B(2) 1 1—asn (K ’ 71+ﬁ+88n 2
BN
K 1—dn 5
B(3) 1 2sn (E) — (g)
B(4) 1
b(n) 5 K1 5 (K , (K : 5 (2K , (K S:(:E()cngzz 5 (3K
2em (5)" (5) don (5) o (?) don (z) o (7)”‘ (z) o (7)

[l

dn2(%K) 1725n(%K)cn(%K)(sn(%K)+Cn(
3K) (14 dn(3K))4

In order to achieve completeness of the set of equations for 5The coefficients of the lowest order Zolotarev polynomials
unknown coefficients we have to use the identity (42) whiclre recomputed in terms of Jacobi’s elliptic functions and
for n = 4 gives summarised in Tab. Il.

The bandpass FIR filter of length 41 designed in [3] and

(4) = 1194(”/4)(1 +dn(1K))4 = (L+ )1+ Vi) reproduced here in Fig.4 is based on Zolotarev polynomial
2 94(0) 2 AVEK (54) Zs.15(u]0.77029) of degree 20
Substitutingb(4) from eq.(54) and consideririg3)+b(1) = 0 Z515(u]0.77029) = T5(Z1,3(u|0.77029)) = T5(Z1 3(w)) .
the set of equations (50) - (53) can be reduced to the matrix (60)
form The impulse response coefficients
0 1 b(3) 1—b(4) 20
wd—ws w? 1 b(2) | = | —1-b@)wi | . T5(Z1 3(w)) = Z a(m) T, (w) (61)
wd —w, wl 1 b(0) —1—b(4)wy m=0
: . L (55) can be evaluated by spectral transformation or by FFT trans-
By inversion of (55) we can express the solution in the forrporm - cf. Table llIl. It is one disadvantage of designing FIR
2(w, filters with inner polynomials.
b3) = o)yt (56) Py

(1 —wp)(1 —w})

2wswy (1 4+ wswp)

b(2) = 2-b(4)(1 —wyws) — (1—w2)(1—w?) (57) V. LINEAR DIFFERENTIAL EQUATION AND RECURSIVE

2w, + wy) EVALUATION OF COEFFICIENTS
1) = - S b(4)(w, +w,),  (58) o . o

(1 —w2)(1 —w?) The approximation equation (7) is nonlinear and cannot

Qww, (1 + wew,) be easily used to remove the parametrisation and find the
b(0) = 1-b(d)wpws + i- 5)2)(1 — wﬁ) : (59)  algebraic form of a Zolotarev polynomial as

j4 s
Note that the polynomials already computed cover also Zy o(w) = Zb(m)wm. (62)

Z3’1(w) = Zl’g(—’w) and ZQ’Q(/LU) = TQ(ZLl(U})).

m=0
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TABLE Il

in nd finally re-normalisation i rform i h
THE IMPULSE RESPONSE COEFFICIENTS OF5(Z1,3(u|0.77029)) obtained and ally re-normalisation is performed using t

value of the Zolotarev polynomial at = 1.
The algorithm gives not only an efficient code for the

L » [ An | evaluation of the Zolotarev polynomials but provides a fyure
‘; gg '8-2‘2‘2222 analytical view on the coefficients. By analytic iteratiore w
> 38| -0035081 can obtain general relations among the coefficients as
3 37| 0.223379 bn— 1)

4 36| 0.387465 n — W —w 67)
5 35| 0.325961 nb(n) e
6 34| 0.039811
4b(n — 2)
7 33| -0.317256 — 3w (W —w MM — N — w.)?
8 32| -0.520533 nb(n) m{Wm = wg) + )(wm = w)
9 31| -0416778 _ _
10 30 || -0.036271 Fwpws = wmwg =1 (68)
11 29| 0.406232 . - .
12 28l 0634285 It is worth to note that coefﬁme_ﬂnt(n— 1) is related tor from
13 27 || 0.485255 eg.(1) through the transformation (6)
14 26| 0.025390 b — 1)
15 25| -0.476835 n— 2 2
16 24 | -0.710942 Ty oen (uo|k) — sn”(uolr), (69)
17 23| -0.520577
18 22 -0.009122 which giveso used by N. I. Achieser [2]
19 21| 0517382
20 0.737995 2sn(u 1
o= (tole) —Z(ug)| — 1. (70)

en(ug|k)dn(ug|k) | sn(2ug|k)

Consequently, we take the first derivative of eq. (7) which
after some algebra leads to the second order linear difiaten

equation VI. CHEBYSHEV EXPANSION OFZOLOTAREV
2 POLYNOMIALS
(@)1= L 0Ty (1u2)g, (w0) Ltgow)f = 0
92 dw?  dw 910 Gy 790 - We wrote the linear differential equation purposely in the

(63)  form (63) which suggests to use Chebyshev polynomials of the

where first kind T,,,(w) in the expansion of Zolotarev polynomials
g2(w) = (w—wp)(w—ws)(w—wm), (64) n

giw) = (0= wp)(w =) — (= wp)w ) rale) = 2 o)), .
gow) = n*(w—w,)®. Indeed, using the differential properties of Chebysheymo!

L . . . . . . mials for an expansion
This differential equation being linear is suitable for the P

solution with the power series. By substituting

" fw) = 37 alm)Tn(w), (72)
m m=0
Jw) = mz::() bimyw™, (65) we can write

n—1 2 n

f(w) = Z (m+1)b(m+ 1)w™, (1- wz)j—w]; - w% = — Z m?a(m)Tp(w),  (73)
m=0 m=0

f'w) = Zo(m +2)(m+ 1)b(m + 2)w™ . (1— wQ)% = i ma(m)[Tpm—1(w) — wly,(w)]. (74)
m= m=0

in the linear differential equation (63) and comparing th¢ne linear differential equation (63) has then the form
coefficients with the same power af we obtain a set of

recursive formulae concisely summarised in Tab. IV. Nog th zn: m2a(m)ga(w) T (w)
the recursion is a convolution with time varying coefficent = m
5 = > ma(m)gi(w)[T—1(w) = wly(w)]  (75)
d(6)b(m+3—6) = Y _d(w)b(m+3—p); m=n+2,...,3 m=0 .
" (66) + 3 alm)go(w)Tm(w) = 0.
which in each consecutive step predicts a new coefficient of m=0

the Zolotarev polynomial. The nonzero initial value is takeln order to compare the coefficients associated with the
b(n) =1 then all valuesh(m) for m =n—1,...,2,1,0 are Chebyshev polynomialg,,,(w) of the same order we have to
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TABLE IV
BACKWARD RECURSIVE ALGORITHM FOR EVALUATION OFZOLOTAREV POLYNOMIALS Zp g (w) = » " _ 'b(m)w™

given
p,q
initialisation
n=p+gq
eq. (9) wp =2cd*(uglr) — 1
eQ- (10) Ws = 20712(’[1,0'[{) —1
wp + Wsg
wq = T
eq. (19)  wpm = ws 4 25T L00Ien(U0)
dn(uo)
B(n)=1
B(n+1)=p(n+2)=B(n+3)=pHn+4) =0

Z(uo)

body
(for m=n-+2 to 3

d(1) = (m+2)(m + Dwpwswm

d(2) = —(m+ 1)(m — Dwpws — (m + 1)(2m + )wmwg

d(3) = wm (n2w2, — m2wpws) + m?(Wm — wq) + 3m(m — L)wq

d(4) = (m — 1)(m — 2)(wpws — Wmwq — 1) — 3wm (n2wm — (m — 1)%wq)
40) = (=) 2 = ) + Swm[n® — (m — 2)?]

d(6) = n* — (m — 3)

1
Bm=3) = o Z d(w)B(m +3 — )
p

(end loop on m)

normalisation
n) = A(m)

m=0
(for m=0 to n)

b(m) = (=1)”

(end loop on m)

pim)
s(n)

remove all the multiplications” T}, (w). Using the recursive h(m)
formula for Chebyshev polynomials

a(0) = h(M),
(2w)1Tm(w) Tm,l(w) =+ Tm+1( ) a(m) = 2h(M — m) (78)
(2w)2 Ty (w) Tp—2(w) + 2T (w) + Trpya(w), of a narrow band FIR filter of lengttv = 20 + 1 = 2(p +
Q)3T (w) = Tnz(w) + 31 (w) (76) q) + 1. Its transfer function is given as

3T, Trnrs(w) .
+3Tm+1(w) + Tz (w) H(2)
and rearranging the summation in equation (75) we ar- M
rive at a recursive evaluation of the coefficientgm). = 2 Zpg(w). (79)
It is again a convolution with time varying coefficientssplely from the numerical point of view the latter algorittisn
{e(1),¢(2),¢(3),¢(4),¢(5), ¢(6),c(7)} rather advantageous as it offers a lower range of coeffiient
which affects the rounding error.

N—-1 M
> )z =z 1a(0) + Y a(m) T (w)
v=0

m=1

6
e(T)a(m+4-7) Z a(m+4—p); m=n+2,...,3 VIl

. FIR FILTERS APPLICATIONS

77) Both recursive algorithms for the coefficients of Zolotdsev
The first nonzero value is takemn) = 1, then all values polynomials provide fundamental tools for the design of
a(m) form =n—1,...,2,1,0 are obtained and finally renor-several types of FIR filters.
malised. The algorithm is concisely summarised in Tab. V. First, we consider the design of a bandpass filter. The
Our algorithm gives directly the impulse response coeffiisie proposed procedure for designing optimal bandpass FIRSfilte
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TABLE V
BACKWARD RECURSIVE ALGORITHM FOR EVALUATION OFZOLOTAREV POLYNOMIALS Z;, 4(w) = anzo a(m)Tm(w)

(m —1)?] + 3w [n°wm — (M — 1)%wg] — (m — 1)(m — 2)(wpws — wmwy)

given
p,q
initialisation
n=p+q
eq. (9) wp = 2cd?(uplr) —1
eq. (10) ws = 2cn?(uplk) — 1
_ Wp + ws
g = ——
—w sn(up)cn(uo) u
eq. (19) wm = ws +27dn(%) Z(uo)
a(n) =1
an+l)=an+2)=an+3)=a(n+4) =a(n+5)=0
body
(for m=n+2 to 3
8c(1) = n? — (m + 3)2
4¢(2) = (2m + 5)(m + 2)(wm — wq) + 3wm[n? — (m + 2)?]
2¢(3) = %[nQ — (m 4 1)2] + Bwm[n?wm —
c(4) = g(n2 —m?2) + m%(wm — wq) + wm (n?
2e(5) = %W -
4¢(6) = (2m — 5)(m — 2)(wm — wq) + 3wm[n? — (m —
8¢c(7) = n?% — (m — 3)2
6
a(m —3) = % 3 clwatm +4- p)
(end loop on m) =
normalisation
s(n) = @ + Z a(m)
m=1
a(0
a(0) = (—1)P
0) = (-1 5
(for m=1 to n)
_ oy alm)
(m) = (-1 2
(end loop on m)

(m +1)%wg] — (m + 1)(m + 2) (wpws — wimw,)

w2, — m2wpws)

2)%]

is a simplified version of that given by X. Chen and T. W. Parkshe procedure is as follows.

[3]. It is free of the transformation froni—1,1) U (o, §) to
the digital domain(—1, w,) U (w,, 1) and it does not require
any FFT algorithm. Auxiliary parameters,, ¢ related to the
partition of the quarter-periol are introduced

K (1) + K (5) = Flpalw) + F(oglr) =K (x),  (80)
where
EK (k) = Flplr),  TK(k) = Floyln)  (81)

are incomplete elliptic integrals of the first kind. The new
auxiliary parameters reduce the computation of the etlipti
function to the standard trigonometric functions as

sn (%K(H)) ,
sn (%K(/{)) .

sin @ (82)

sin (83)

1) Specify the desired stopband edges < ws and
stopband ripple).
2) Evaluate the modulus of Jacobi’s elliptic functiongor
_wT T —wpT
2 2
, 1
K=—"F""-.
tan(ps) tan(pp)
3) Compute the minimum degree needed to satisfy the
attenuation of the stopband ripples. This requires the
simultaneous solution of partition equation (80) and the
degree equation

- n(ym +1/y2, — 1)
20, Z(EK(K)|k) — 2I(04,, EK(K)|K) '
where

Ps and, =

(84)

(85)

Ym = 100.055 (86)
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TABLE VI

COMPARISON OF DYNAMIC RANGE OF COEFFICIENTS FOR . . . . .
The FIR bandpass filters obtained are maximum ripple filters

so that the only available stopband edges are discretised by
€d.(80). This is naturally different from the filters desgrby

REPRESENTATION OF POLYNOMIALZ3 6(u|0.682) FROM FIG. 6

73 5 03&?38 Obl(g;)‘l the Parks-McClellan program where band edges are adjusted
1 | 0097937 -92167 by one or more extra zeros which are off the unit circle [6].

2 | -0.098642 6.6731 Zolotarev’s polynomials have no other zeros than those on
i '8-33228(13 1%;%23 the unit circle and therefore they satisfy only the bandeedg

5 | 0095518 -477.1399 rec_]uirements constra_ined by eq.(80). Strict approximalﬁ;l .

6 | 0.182318| 28.5587 quirements usually give such discrete values for the mossti

7 | 0.085744| 630.9074 f n n

8 | 0088763| -113623 of stopband/passband edges.

9 | -1.085798| -277.9644

corresponds to the maximum of the Zolotarev poly T
nomial at the pointw,,. The degree equation fol-
lows from egs. (16), (17), (24) and (27). Note [
that it is a true degree equation as all variable_lsf
O, (o, 2K (k)|k), Z(EK(k)|x) are due to the par-
tition equation (80) explicitly independent af

4) Use eq. (81) to determine integer valuegpand q.

5) Compute the actual values @f,,w, andw,, as

— coc _ 2 (4
wy, =coswpT = 2sn <EK(I€)> -1, 20
ws = cosw,T = 1—2sn? (BK(K)) ,
n -35
d
Wy = COSwWp, T = ws+2 % (uo) - —40 : : :
sn(uo)en(uo) 0 01 02 03 04 05 06 07 08 09 1

6) For integer valuep andgq carry out the algorithm givin
) 9 P q y 9 9 9 Fig. 5. Complementary FIR filter pair witw,7 = 0.1717x transformed

the impulse response coefficients from the bandpass in Fig. 4. Frequency respofie’«) is plotted versus
the normalised frequency.
a(0) = h(M),

a(m) = 2h(M —m). (87) Second, we design a complementary pair of FIR filters

based on a Zolotarev polynomial

Zp,q(w) = Z a(m)Tm(w) (88)

by linear transformation

-10+ . It wy, o T—wy
T2 YT T
151 ] Third, we introduce the design of almost equiripple double-
notch FIR filters. The procedure is based on the observation
200 1 that the odd part of a Zolotarev polynomial has two extra sobe
for which

(89)

) (Zp,g(w) = Zp g(—w))| > 1, (90)

which are of the same magnitude. Substituting the odd part of
Zolotarev polynomial in a Chebyshev polynomial we generate
the transfer function of a double-notch FIR filter using

4% 01 02 03 04 05 06 07 08 09 1 Qw) = T,(Zpq(w)) - (91)

. _ . The transfer function of a double-notch FIR filter of length
Fig. 4. Bandpass filter of length 41 based on Zolotarev patyiab

75 15(u[0.77029) of degree 20, witho, T = 030237, wmT = 0.25200  2M +1=7(p+¢) +1is then
and wpT = 0.2017w. Frequency responsél(e’*) is plotted versus the Q(u))
normalised frequency. The ripples in the stopbands are hess-21.65 dB. H(z) — M (1

Q

|
w
ol

T

I

92
(Wmas) (92)
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Note that the maximum occurs at,,., which is slightly new conceptin approximation problems. The linear difféeén
different from the valuew,, which belongs to the maximum equation then yields solutions for both representatior®y (6
of a Zolotarev polynomial. In the example in Fig. 6 theand (71). Apart from usual FIR filters we have proposed
differences are as follows the design of almost equiripple double-notch FIR filterse Th
algorithms give not only an efficient code for evaluation of
Wmaz = +0.5018 Wiz = +0.4977. (93) Zolotarev polynomials but provide a purely analytical view
The ripples in the passband are not exactly equal but they fan the coefficients.
within the limit of ripples of an optimal single notch filter. There are more mathematical problems to be solved such as
Such FIR filters will play an important role in filtering of thethe problem of distribution of the zeros or the orthogoyatit
sinusoidal interference harmonics. Zolotarev polynomials. The solutions of these problemd wil
presumably affect several signal processing algorithms.

IX. APPENDIX| - EVALUATION OF MAXIMUM OF
ZOLOTAREV POLYNOMIALS

For Jacobi’'s zeta function the addition theorem holds
Z(u|k)+Z (v|k)—Z(utv|k) = w2sn(u|k)sn(v|k)sn(utv|k).

The addition theorem relates the single periodic funcfign)

to the double periodic Jacobi’s elliptic functiamn(u). This is
the reason why there is no algebraic relation which connects
Z(u) with sn(u),cen(u) anddn(u) [5] and why this formula
is often called quasi-addition theorem [4]. Consequertily t
numerical evaluation o (u) is usually performed using an
arithmetic-geometric mean procedure [1] omitting the addi
theorem. In our application the argumenis attributed to the
specific discrete values of the half-period and the zetatiomc
is not necessarily evaluated independently of Jacobiiptiell
functions. For Jacobi’s zeta functio#(u|x) of a discrete
argumentu,,, = m K(x) we have used the addition theorem
to prove the algebraic formula [10]

1
sn ( K)
n
2] = w?———L(A-nB)[S],  (99)
where the abbreviated notation for vectors is introduced
_ n_1 -
01 02 03 04 05 06 07 08 09 1 z ( n K)
Fig. 6. Odd part of Zolotarev polynomids s(1|0.682) of degree 9, with
wsT = 0.3771m, wyT = 0.33427 andw, T = 0.29127 and the frequency
response of the corresponding FIR double-notch filter gaadrby Ty (x). [Z] = 9 (95)
Frequency responsH (e7*) with notch frequencies specified byy+7 = 712K
0.33277 andwo_T = 0.66737 is plotted versus the normalised frequency. n
The ripples in the passband are less than 1 dB. 1
L n J
i n—1 n
sn ( K) sn (7 K)
n n
VIIl. CONCLUDING REMARKS .

We have presented a purely algebraic solution for Zolotarev g ' 96
polynomials which completely replaces so far used parametr (5] = ) 3 : (96)
solutions for these polynomials. The recursive algorithves s\ K) s K)
have derived are well suited for the design of optimal nafrow 1 9
band FIR filters. The second algorithm leads directly to the sn ( K) sn ( K)

impulse response coefficients of a narrow-band filter. Thie co
of the solution is seen in linear differential equation for & this equation (94) the upper triangular matichof units and
general Zolotarev polynomial which is to our knowledge Bbwer triangular matrix. of units, are used in the following
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sense where the abbreviated notation for vectors is introduced
_ 1 :
B = U-1, 97) M(u, “—— K|x)
A = nnl-L)(L+U-1). (98)
Note that both A and B are singular matrices. The equation [ = 5 (101)
(94) can be also written in a scalar form (u, = K|k)
n
) K2sn (1 K) II(u, 1 K|k)
n L n _
d (E K) - n % (99) [ R(u,n —1,1|k) ]
n—1
1
x{szn(mK)sn(erK> :
m=1 " K R] = ' : (102)
p—1
1 R(u,2,1|k)
fn25n<m K) sn(er K)}
m=1 " " | R(u,1,1|k)

The algebraic formula simplifies the evaluation of the posit The notation in equation (100) is the same as in equation (94)
of the maximum value of a Zolotarev polynomial (21). ItsSThe algebraic representation of the elliptic integral @& third
matrix form (94) was successfully used for an efficient codénd of the discrete parameter (100) reduces the evaluafion
in Matlab. The evaluation of the discrete zeta function uséise maximum value of a Zolotarev polynomial to the standard
the standard procedure for the elliptic functiemn. elliptic function sn. The formula was used for an efficient

) code in Matlab.
function u=zeta(n, k)

%******************************************f‘unction f:e| | i p| (u,n,k)

%* Zeta(n, k) %*******************************************
% * Jacobi’'s Zeta Function of discrete % * f=ellipi(u,n,k) *
% * argument K(k)/n %* Elliptic integral of the third kind *
% * eval uation based on addition theorem % * of discrete paraneter K(k)/n, *
%* Z(u) + Z(v) - Z(u+v) = % * argument u and nodul us k *
% * k*k*sn(u| k) *sn(v| k) *sn(u+v| k) % * eval uati on based on addition theorem *
% * Erlangen, June 1997, Mroslav Vlcek % * for paraneters *
%******************************************%* P(U,a) + P(U, b) - P(u1a+b) = R(U,a, b) *
quarter=ellipke(k.*k); % * Erlangen, July 1997, Mroslav M cek *
S=E||ij((1 n)*quartel’/n, k*k)’ %*******************************************
v=s(n-(1:n-1)).*s(n+l-(1:n-1)); quarter=ellipke(k*k);

a=di ag(n-1:-1:1)*ones(n-1); si=ellipj(u,k.*Kk);

b=ones(n-1)-tril (ones(n-1)); s=ellipj((1:n)*quarter/n, k*k);

u=k. *k*s(1)/n*(a-n*b)*v’; sp=el l'i pj ((1:n)*quarter/n+u, k*k) ;

L ) ) smeel 1ipj ((1:n)*quarter/n-u, k*k);
The elliptic integral of the third kindI(u,ar) present a ,_x « k*s(1)*s(n-(1:n-1)).*s(n+1-(1:n-1)):
far more formidable computational problem on account of ,—;_ |« k*s(1)*si *s(n-(1:n-1)).*sm(n+1-(1:n-1));
its dependence on three parameters. In our application ffle_q k*s(1)*si*s(n-(1:n-1)).*sp(n+1-(1:n-1));
parametem is attributed to the specific discrete values of the_ og(nu./de)/2 + v:

half-period for which the addition formula holds a=di ag(n- 1: - 1: 1) *ones(n- 1) ;
b=ones(n-1)-tril (ones(n-1));
H(us i) 1w rlre) = I, p i) = P01 pua( L) (e neby o)

1. 1—r2sn(

K)sn(u)sn(E K — u)
n
2 1+ k2sn(

K)sn(u)sn(EE K+ u)

+ X. APPENDIXII - RELATION BETWEEN CHEBYSHEV AND
ZOLOTAREV POLYNOMIALS

n

P r p+r The Chebyshev polynomials of the first kirifi,(z) are
+u stn(ﬁ K)sn(ﬁ K)sn( - K) = R(u,p,r|k) defined as

The addition formula for parameters has a similar form ta tha 7, () = 1 [(x V22— 1"+ (2 — Va2 — 1)n} . (103)
of the zeta function so we can immediately write the algebrai 2

formula [10] As the following relation holds

] = % (A—nB)[R] , (100) (x+Va? =)z —Va?—1)=1,  (104)
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we can rewrite equation (103)

1
Tu@) = 5 [(z FVEE D) 4 (2 — V2 = 1)”}
= %(A" +AT. (105)
It is clear that 1
z = 5(A+x1), (106)

and finally we obtain the formula
T, 1(A+x1) = 1(xurx”)
"\ 2 2

which gives a straightforward relation of a Zolotarev payn
mial to the Chebyshev polynomial, egs. (25) and (26).

(107)
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