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Zolotarev Polynomials and Optimal FIR Filters
Miroslav Vlček and Rolf Unbehauen,Fellow, IEEE

Abstract— The algebraic form of Zolotarev polynomials re-
fraining from their parametric representation is introduced. A
recursive algorithm providing the coefficients for a Zolotarev
polynomial of an arbitrary order is obtained from a linear
differential equation developed for this purpose. The correspond-
ing narrow-band, notch and complementary pair FIR filters
are optimal in Chebyshev sense. A recursion giving an explicit
access to the impulse response coefficients is also presented. Some
design examples are included to demonstrate the efficiency of the
presented approach.

Index Terms— Zolotarev polynomials, optimal FIR narrow
bandpass and notch filters, impulse response, recurrence formula.

I. I NTRODUCTION

DURING the period 1868-1878 E. Zolotarev stated and
solved four problems in approximation theory, two con-

cerned of polynomials and the other two of rational functions.
The solution of the third problem was introduced in filter
theory by W. Cauer in 1933. The first problem concerns of
the polynomial of the form

f(x) = xn−nσxn−1+β(n−2)xn−2+. . .+β(1)x+β(0) , (1)

which deviates least from zero in a given interval whereσ is
a given real number. Ifσ ≤ tan2(π/2n), the solution is given
in terms of Chebyshev polynomials

f(x) =
1

2n−1
(1 + σ)nTn

(

x − σ

1 + σ

)

, (2)

while for σ > tan2(π/2n) no such solution exists. Zolotarev
derived the general solution in terms of elliptic functions. The
application of that class of polynomials in filter theory hadto
wait till 1970 when R. Levy studied odd Achieser-Zolotarev
polynomials with the application to the quasi-lowpass filters.
In his complete treatise [5] he pointed out that ”the most
satisfactory method for forming a Zolotarev function would
be from closed-form expressions for the coefficients, or from
recursion formula. No such formulas have yet been found.”

Later, in 1986 X. Chen and T. W. Parks generalised
Zolotarev polynomials for the design of optimal FIR narrow-
band filters exhibiting equiripple behaviour over the stop
bands. They have extended the original closed form solution
to a more general polynomial and begun to call this extension
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a Zolotarev polynomial. They have introduced polynomials of
degreeN with L zeros in the interval(α, β) andN −L zeros
in the interval(−1, 1) in a standard parametric form

x =
sn2(u|κ) + sn2(

L

N
K(κ)|κ)

sn2(u|κ) − sn2(
L

N
K(κ)|κ)

(3)

fN,L(u|k) =
(−1)L

2















H(u − L

N
K(κ))

H(u +
L

N
K(κ))







N

(4)

+







H(u +
L

N
K(κ))

H(u − L

N
K(κ))







N








,

whereH(u − L

N
K(κ)) is Jacobi’s eta function,sn(u|κ) is

Jacobi’s elliptic function andK(κ) is the complete elliptic
integral of the first kind of modulusκ.

Having found satisfactory results using numerical algo-
rithms for the involved special functions - theta, Jacobi’seta
and zeta functions X. Chen and T.W. Parks [3] emphasised
”E.V. Voronovskaya [11] demonstrated a way to synthesise
such polynomials using a linear functional method. In addition,
she gave an example of synthesising the Zolotarev polynomial
of degree three and derived the analytic formulas for its
coefficients. Unfortunately, the general practical algorithm is
still not available.”

An efficient evaluation of Zolotarev polynomials remains a
vivid question in spite of their 120 years history. Recently, in
[7] I. W. Selesnick and C. S. Burrus quoted that a subset of
maximal ripple bandpass filters can be found using analytic
methods involving Zolotarev polynomials as described by X.
Chen and T.W. Parks.

In our paper we develop a completely analytic procedure for
evaluation of the Zolotarev polynomials [3] which replaces
their standard parametric representation. We use a slightly
different notation for Zolotarev polynomialZp,q(u|κ) em-
phasising thatp counts the number of zeros right from the
maximum andq corresponds to the number of zeros left from
the maximum, andn = p+ q is the degree. We also introduce
the independent variablew which is confined to the intervals
(−1, ws) ∪ (wp, 1) and it is related to the digital domain by

w =
1

2

(

z + z−1
)∣

∣

z=ejωT = cos ωT . (5)

The intervals(−1, 1)∪ (α, β) are transformed to the intervals
(−1, ws) ∪ (wp, 1) by the linear transformation ofx

w = xcn2(u0|κ) − sn2(u0|κ) , (6)
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whereu0 =
p

p + q
K(κ). We have derived a linear differential

equation from which a recurrent formula for coefficients fol-
low. The algorithm is also extended to the Chebyshev polyno-
mial expansion of Zolotarev’s polynomials which is important
for direct computation of the impulse response coefficients.
Consequently, it replaces the FFT algorithm required in the
analytic design of optimal narrow band FIR filters [3].

II. D IFFERENTIAL EQUATION OF APPROXIMATION AND

FUNDAMENTAL PROPERTIES

The extremal values of Zolotarev polynomialZp,q(u|κ) of
degreen = p+q alternates between -1 and +1(p+1)-times in
the interval(wp, 1) and(q+1)-times in the interval(−1, ws).
By inspection the Zolotarev polynomial of Fig.1 satisfies the
differential equation

(1−w2)(w−wp)(w−ws)

(

df

dw

)2

= n2(1−f2)(w−wm)2 .

(7)

This equation (7) expresses the fact that the derivative
df

dw
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Fig. 1. Zolotarev polynomialZ5,9(u|0.78) of degree 14, withws = 0.2319,
wm = 0.4292 andwp = 0.6075

does not vanish at the pointsw = ±1, ws, wp wheref = ±1
for which the right hand side of eq. (7) vanishes, and that
w = wm is a turning point corresponding to the local extrema
at which f 6= ±1. We will call eq. (7) the approximation
equation as its form indicates the behaviour of a Zolotarev
polynomial. In oder to solve the differential equation (7) we
recall conformal transformation [2], [5] from thew plane to
the u plane

w =
sn2(u)cn2(u0) + cn2(u)sn2(u0)

sn2(u) − sn2(u0)
. (8)

Under this transformation the edgeswp andws correspond to

wp = 2 cd2(u0|κ) − 1 = 2 sn2

(

q

p + q
K(κ)|κ

)

− 1 , (9)

ws = 2 cn2(u0|κ) − 1 = 1 − 2 sn2

(

p

p + q
K(κ)|κ

)

, (10)

while the valuewm is subject to the solution. The conformal
transformation (8) suggests the parametrisation in the differ-
ential equation (7)

1

n
√

f2 − 1

df

du
=

w − wm
√

(w2 − 1)(w − wp)(w − ws)

dw

du
. (11)

Using the inverse transformation to (8)

sn2(u) = sn2(u0)
1 + w

w − ws

(12)

and combining with (10) and (11) we obtain

dw

du
= −4sn(u)cn(u)dn(u)

sn2(u0)cn
2(u0)

(sn2(u) − sn2(u0))2
(13)

= − dn(u0)

sn(u0)cn(u0)

√

(w2 − 1)(w − wp)(w − ws) .

Then substituting
f(w) = coshnΦ (14)

equation (11) becomes

dΦ

du
=

dn(u0)

sn(u0)cn(u0)
(wm − w) (15)

=
dn(u0)

sn(u0)cn(u0)
(wm − ws)

−2
sn(u0)cn(u0)dn(u0)

sn2(u) − sn2(u0)
.

The eq.(15) can be integrated by using Jacobi’s expression
[12] for the elliptic integral of the third kindΠ(u, u0|κ), the
theta functionΘ(u) and zeta functionZ(u0|κ)

Π(u, u0|κ) =
1

2
ln

Θ(u − u0)

Θ(u + u0)
+ uZ(u0|κ) . (16)

In view that

Θ(u − u0 + i K(κ′))

Θ(u + u0 + i K(κ′))
=

H(u − u0)

H(u + u0)
(17)

we obtain

Φ = u
dn(u0)

sn(u0)cn(u0)
(wm−ws)−ln

H(u − u0)

H(u + u0)
−2uZ(u0|κ) .

(18)
Provided we assign the first term to Jacobi’s zeta function
Z(u0)

2Z(u0) =
dn(u0)

sn(u0)cn(u0)
(wm − ws) , (19)

it finally reduces to

Φ = ln
H(u + u0)

H(u − u0)
. (20)

From eq.(19) the position of the maximum valuewm is found
as

wm = ws + 2
sn(u0)cn(u0)

dn(u0)
Z(u0) . (21)
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In order to find the argumentum to which the maximumwm

belongs we write (8) as

sn2(um|κ) =
wm + 1

wm − ws

sn2(
p

n
K(κ)) (22)

=
sn( p

n
K)cn( p

n
K)dn( p

n
K) + sn2( p

n
K)Z( p

n
K)

Z( p
n

K)
.

As for um = σm + i K(κ′) is

sn2(um|κ) =
1

κ2sn2(σm|κ)
, (23)

we get the final expression

σm = F

(

arcsin

(

1

κsn( p
n

K)

√

wm − ws

wm + 1

)

|κ
)

, (24)

whereF (φ|κ) is the elliptic integral of the first kind. With the
substitution (14) we arrive at the standard result (4)

Zp,q(u|k) =
(−1)p

2









H(u − p

n
K(κ))

H(u +
p

n
K(κ))





n

(25)

+





H(u +
p

n
K(κ))

H(u − p

n
K(κ))





n

 .

The factor(−1)p appears here as the generalised Zolotarev
polynomial alternates(p + 1)-times in the interval(wp, 1)
[3]. Using (14), (20) an arbitrary Zolotarev polynomial canbe
alternatively expressed in terms of the Chebyshev polynomial

Zp,q(u|κ) = (−1)pTn

(

A p

n
(u|κ)

)

= cos nΦ , (26)

provided that we define the argument as

A p

n
(u|κ) = cos Φ =

1

2

[

H(u − u0)

H(u + u0)
+

H(u + u0)

H(u − u0)

]

. (27)

III. A LGEBRAIC FORM THROUGH THEFIRST PRINCIPLES

From the set of parametric equations (8), (26) and (27) we
derive an algebraic form of the simplest Zolotarev polynomial
Zp,p(u|κ) which is specified by the symmetrical distribution
of the zeros in the two disjoint intervals(−1,−wp)∪ (wp, 1).
Here and in the following, wherever the modulusκ is to be
emphasised we use the notationsn(u|κ).

In this particular case the variablesu0 = 1

2
K(κ),

sn( 1

2
K(κ)|κ) = (1 + κ′)−1 and

w =
sn2(u|κ)(1 − sn2( 1

2
K(κ)|κ)) + sn2( 1

2
K(κ)|κ)

sn2(u|κ) − sn2( 1

2
K(κ)|κ)

= −1 − (1 − κ′)sn2(u|κ)

1 − (1 + κ′)sn2(u|κ)
(28)

are used. Next, we use the standard notation [4] for the
ϑ - functions which assigns for the eta function

H(u) = ϑ1(v) , (29)

H(u + K(κ)) = ϑ2(v) ,

wherev =
π

2 K(κ)
u. Then the argument (27) can be written

as

A 1

2

(u|κ) =
1

2

[

H(u − 1

2
K(κ))

H(u + 1

2
K(κ))

+
H(u + 1

2
K(κ))

H(u − 1

2
K(κ))

]

=
1

2

[

ϑ1(v − π
4
)

ϑ2(v − π
4
)

+
ϑ2(v − π

4
)

ϑ1(v − π
4
)

]

=
1

2

[√
κ′

sn(u − 1

2
K(κ)|κ)

cn(u − 1

2
K(κ)|κ)

(30)

+
1√
κ′

cn(u − 1

2
K(κ)|κ)

sn(u − 1

2
K(κ)|κ)

]

.

The pair of equations (28) and (30) already indicates that
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Fig. 2. Symmetrical Zolotarev polynomialZ7,7(u|0.7575) of degree
14, with ωsT = 0.5674π, ωmT = 0.5π and ωpT = 0.4326π and
corresponding responseW (ejω) of the Chebyshev window function with
ω0T = 0.1347π plotted versus the normalised frequency - cf. Tab. I.

between the variablesw andA 1

2

an algebraic relation exists.
Using Gauss’ transformation for the elliptic functions [4]

u =
1 + k′

2
(z + K(k′)) , (31)

κ =
2
√

k′

1 + k′
,

and then letting
z = j(y − j K(k′)) (32)

we obtain the simplified parametric representation

w = dn(y|k) , (33)

A 1

2

= cn(y|k) .

Due to this mapping of the independent variablew the edges
are related to the new modulus as

wp = −ws = k′ . (34)

As the standard identity for Jacobi’s elliptic functions holds

cn2(y|k) = dn2(y|k) − k′2sn2(y|k) , (35)
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TABLE I

THE CHEBYSHEV WINDOW FUNCTION AND CORRESPONDING NARROW-BAND FIR FILTER BASED ON THEZOLOTAREV POLYNOMIAL

Window Function FIR Narrow-Band Filter

W (ejω) =

M
∑

n=−M

wM (n)e−jnω = T2M

(

1

k
cos

ω

2

)

H(ejω) =

2M
∑

n=0

h(n)e−jnω

= T2M (sn(u|k)) = e−jMω(−1)MT2M (cn(u|k))

= T2M

(

v

k

)

for k = cos
ω0

2
= e−jMω(−1)MTM

(

2w2 − 1 − k′2

1 − k′2

)

implicit definition of the windowwM (n) the transfer functionH(ejω)

T2M (sn(u|k)) (−1)MT2M (cn(u|k)) = (−1)MTM (2cn2(u|k) − 1)

T2M

(

v

k

)

= TM

(

2v2 − k2

k2

)

TM

(

1 + k′2 − 2w2

1 − k′2

)

= (−1)MTM

(

2w2 − 1 − k′2

1 − k′2

)

v2 + w2 = 1 k2 + k′2 = 1

wM (m) = h(M − m) = h(m)

(−1)MM

M
∑

n=m

(−1)n

M + n

(

M + n
M − n

)(

2n
n − m

)

k−2n (−1)mM

M
∑

n=m

(−1)n

M + n

(

M + n
M − n

)(

2n
n − m

)

(1 − k′2)−n

for | m |≤ M for m = 0, 1, . . . M

the argumentA2
1

2

(y|k) and the independent variablew are
simply related as

2A2
1

2

(y|k) − 1 =
2w2 − 1 − k′2

1 − k′2
. (36)

Finally, the algebraic form of the symmetrical Zolotarev
polynomialZp,p(u|κ) reads

Zp,p(w) = (−1)pTp

(

2w2 − 1 − k′2

1 − k′2

)

. (37)

This polynomial is equivalent to the implicit definition of the
Chebyshev window function [9] - Tab. I.

Though we have demonstrated that replacing of the standard
parametric representation of Zolotarev polynomials (3), (4)
by an algebraic form is possible, for the general polyno-
mial Zp,q(u|κ) this would be a formidable approach. We
should have a unified parametrisation of both the argument
A p

n
(u|κ) - eq.(27) and the independent variablew - eq.(27)

in terms of Jacobi’s elliptic functions. This means that we
should look for expressions in which ratios ofϑ−functions
as in eq.(27) are given by elliptic functions. Consequently, it
requires general modular transformations of Jacobi’s elliptic
functions andϑ− functions which belong to a rather difficult
part of mathematics. But the results will be rewarding. Here,
after a modular transformation we have obtained simplified
parametric equations of the form (33) which as a result give
symmetrically distributed zeros of the Zolotarev polynomial

Zp,p(w)

w2
µ = k′2 + k2 cos2

2µ − 1

4p
π µ = 1 . . . p . (38)

The factorized form of the symmetrical polynomial is then

Zp,p(w) =
(−1)p22p−1

(1 − k′2)p

p
∏

µ=1

(w2 − w2
µ) . (39)

IV. A LGEBRAIC FORM USING L IOUVILLE ’ S THEOREM

In order to find an algebraic form for Zolotarev’s polyno-
mials from the first principles we attempted to express the
argument (27) which can be written in terms of theta functions
(29)

A p

n
(u|κ) =

1

2

[

θ1(v − v0)

θ1(v + v0)
+

θ1(v + v0)

θ1(v − v0)

]

(40)

through the independent variablew (8) which can be also
written in terms of theta functions

w =
1

κ2

1 − dn(u + u0|κ)dn(u − u0|κ)

sn(u + u0|κ)sn(u − u0|κ)
(41)

=
ϑ4(v + v0)ϑ4(v − v0) − κ′κ2ϑ3(v + v0)ϑ3(v − v0)

κ3ϑ1(v + v0)ϑ1(v − v0)
.

Due to the properties of theta functions the argumentA p

n
(u|κ)

(40) and the independent variablew (41) have the same
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poles. This consequently means that any polynomial inA p

n

remains a polynomial in the variablew. For a different ratio
of zerosp/q = 1/1, 1/2, 1/3, . . . in the two disjoint intervals
(−1, ws) ∪ (wp, 1) we get the polynomials

(−1)pZp,p(u|κ) = T2p(A 1

2

(u|κ)) = Tp(T2(A 1

2

)) ,

(−1)pZp,2p(u|κ) = T3p(A 1

3

(u|κ)) = Tp(T3(A 1

3

)) ,

(−1)pZp,3p(u|κ) = T4n(A 1

4

(u|κ)) = Tp(T4(A 1

4

)) ,

and the search for an algebraic form of a Zolotarev poly-
nomial is reduced to the investigation of an algebraic form
of one of the inner polynomials T2(A 1

2

), T3(A 1

3

), . . . only.
The inner polynomials are just generators of an arbitrary
Zolotarev polynomial. Now we form the ratio of two polyno-

mials Tn(A p

n
(u|κ))/

n
∑

µ=0

b(µ)wµ of the same degreen. This

expression is an elliptic function whose numerator and denom-
inator have the same poles and the same zeros. According to
Liouville’s theorem [12] this ratio must be constant.

From the first principles it is also possible to evaluate the
coefficientb(n) accompanying the highest power ofw in the
general Zolotarev polynomial. If we use the representation(26)
it turns out that the limitw → ∞ is equivalent to the limit
v → v0 and then

b(n) = lim
v→v0

Tn(A 1

n
)

wn
=

1

2

{

ϑ4(2v0)

ϑ4(0)
+

ϑ3(2v0)

ϑ3(0)

}n

(42)

=
1

2

{

ϑ4(2v0)

ϑ4(0)
[1 + dn(2u0|κ)]

}n

,

where2v0 = π/n. This expression again confirms that for the
general Zolotarev polynomial the evaluation of the coefficients
is closely related to modular transformations ofϑ−functions.
We have employed Liouville’s theorem and the values of the
highest coefficients in the evaluation of an algebraic form of
the polynomialsT2(A 1

2

), T3(A 1

3

) andT4(A 1

4

). We now show
how the third order Zolotarev polynomial is developed. First
assume the identity

4A3
1

3

(u|κ)) − 3A 1

3

(u|κ))

b(3)w3 + b(2)w2 + b(1)w + b(0)
= 1 (43)

and then by investigating the behaviour of both polynomials
- cf. Fig. 3 - in specific points we write the set of algebraic
equations

at w = −1 4A3
1

3

− 3A 1

3

= −1 , (44)

−b(3) + b(2) − b(1) + b(0) = −1 ,

at w = ws 4A3
1

3

− 3A 1

3

= −1 , (45)

b(3)w3
s + b(2)w2

s + b(1)ws + b(0) = −1 ,

at w = wp 4A3
1

3

− 3A 1

3

= −1 , (46)

b(3)w3
p + b(2)w2

p + b(1)wp + b(0) = −1 ,

at w = 1 4A3
1

3

− 3A 1

3

= 1 , (47)

b(3) + b(2) + b(1) + b(0) = 1 .

Observing thatb(2)+b(0) = 0 the set of equations (41) - (44)
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1
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WpWs

Fig. 3. PolynomialT3(A 1

3

(u|κ)), with κ = 0.85 with ws = 0.2369 and
wp = 0.7077.

can be written in the matrix form




1 0 1
w3

s w2
s − 1 ws

w3
p w2

p − 1 wp









b(3)
b(2)
b(1)



 =





1
−1
−1



 , (48)

which can be easily inverted giving the solution in terms of

ws = 1 − 2sn2

(

K
3

)

andwp = 2cd2

(

K
3

)

− 1

b(3)∆ = (ws − wp)(1 + wpws) − (1 − w2
p) − (1 − w2

s) ,

b(2)∆ = wpws(w
2
s − w2

p) − wp(1 − w2
p) − ws(1 − w2

s) ,

b(1)∆ = w3
p − w3

s + w2
pw2

s(ws − wp) + 2 − w2
p − w2

s ,

b(0)∆ = −wpws(w
2
s − w2

p) + wp(1 − w2
p) + ws(1 − w2

s) .

where∆ = (ws − wp)(1 − w2
p)(1 − w2

s) is the determinant
of the matrix in eq. (48). It is worth noticing thatZ2,1(w) =
Z1,2(−w).

In the case of the fourth order Zolotarev polynomial we
investigate the behaviour of the expression

8A4
1

4

(u|κ)) − 8A2
1

4

(u|κ)) + 1

b(4)w4 + b(3)w3 + b(2)w2 + b(1)w + b(0)
= 1 . (49)

As in the previous case we obtain the set of algebraic equations

8A4
1

4

− 8A2
1

4

+ 1 = 1 , (50)

b(4) − b(3) + b(2) − b(1) + b(0) = −1 ,

8A4
1

4

− 8A2
1

4

+ 1 = −1 , (51)

b(4)w4
s + b(3)w3

s + b(2)w2
s + b(1)ws + b(0) = −1 ,

8A4
1

4

− 8A2
1

4

+ 1 = −1 , (52)

b(4)w4
p + b(3)w3

p + b(2)w2
p + b(1)wp + b(0) = −1 ,

8A4
1

4

− 8A2
1

4

+ 1 = 1 , (53)

b(4) + b(3) + b(2) + b(1) + b(0) = 1 .
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TABLE II

COEFFICIENTS OF THE LOWEST ORDERZOLOTAREV POLYNOMIALS Z1,n−1(w) = b(n)
∑n

m=0
β(m)wm

normalised
coefficients n=2 n=3 n=4

β(0) −1 + 2sn2

(

K

2

)

cn2

(

K

2

)

−

(

1 − 2sn

(

K

3

))2

−β − 4

sn

(

K

2

)

cn

(

K

2

)

dn

(

K

2

)

(

1 + dn

(

K

2

))4

β(1) 0 4sn2

(

K

3

)

cn2

(

2K

3

)

− 1 −2sn

(

K

2

)

(

1 − dn

(

K

2

))2

1 + dn

(

K

2

)

β(2) 1
(

1 − 2sn

(

K

3

))2

−1 + β + 8

sn

(

K

2

)

cn

(

K

2

)

dn

(

K

2

)

(

1 + dn

(

K

2

))4

β(3) - 1 2sn

(

K

2

)

(

1 − dn

(

K

2

))2

1 + dn

(

K

2

)

β(4) - - 1

b(n)
1

2sn2

(

K

2

)

cn2

(

K

2

)

1

4sn2

(

K

3

)

cn2

(

2K

3

)

sn

(

K

2

)

cn

(

K

2

)

4sn2

(

K

4

)

sn2

(

3K

4

)

cn2

(

K

4

)

cn2

(

3K

4

)

β
dn2( 1

2
K)

sn2( 1

2
K)dn2( 1

2
K)

1 − 2sn( 1

2
K)cn( 1

2
K)(sn( 1

2
K) + cn( 1

2
K))2

(1 + dn( 1

2
K))4

In order to achieve completeness of the set of equations for 5
unknown coefficients we have to use the identity (42) which
for n = 4 gives

b(4) =
1

2

ϑ4(π/4)

ϑ4(0)
(1 + dn(

1

2
K))4 =

(1 + κ′)(1 +
√

κ′)4

4
√

κ′κ′

(54)
Substitutingb(4) from eq.(54) and consideringb(3)+b(1) = 0
the set of equations (50) - (53) can be reduced to the matrix
form





0 1
w3

s − ws w2
s 1

w3
p − wp w2

p 1









b(3)
b(2)
b(0)



 =





1 − b(4)
−1 − b(4)w4

s

−1 − b(4)w4
p



 .

(55)
By inversion of (55) we can express the solution in the form

b(3) =
2(ws + wp)

(1 − w2
p)(1 − w2

s)
− b(4)(ws + wp) , (56)

b(2) = 2 − b(4)(1 − wpws) −
2wswp(1 + wswp)

(1 − w2
p)(1 − w2

s)
,(57)

b(1) = − 2(ws + wp)

(1 − w2
p)(1 − w2

s)
+ b(4)(ws + wp) , (58)

b(0) = 1 − b(4)wpws +
2wswp(1 + wswp)

(1 − w2
p)(1 − w2

s)
. (59)

Note that the polynomials already computed cover also
Z3,1(w) = Z1,3(−w) andZ2,2(w) = T2(Z1,1(w)).

The coefficients of the lowest order Zolotarev polynomials
are recomputed in terms of Jacobi’s elliptic functions and
summarised in Tab. II.

The bandpass FIR filter of length 41 designed in [3] and
reproduced here in Fig.4 is based on Zolotarev polynomial
Z5,15(u|0.77029) of degree 20

Z5,15(u|0.77029) = T5(Z1,3(u|0.77029)) ≡ T5(Z1,3(w)) .
(60)

The impulse response coefficients

T5(Z1,3(w)) =

20
∑

m=0

a(m)Tm(w) (61)

can be evaluated by spectral transformation or by FFT trans-
form - cf. Table III. It is one disadvantage of designing FIR
filters with inner polynomials.

V. L INEAR DIFFERENTIAL EQUATION AND RECURSIVE

EVALUATION OF COEFFICIENTS

The approximation equation (7) is nonlinear and cannot
be easily used to remove the parametrisation and find the
algebraic form of a Zolotarev polynomial as

Zp,q(w) =

n
∑

m=0

b(m)wm . (62)
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TABLE III

THE IMPULSE RESPONSE COEFFICIENTS OFT5(Z1,3(u|0.77029))

n h(n)

0 40 -0.643099
1 39 -0.226762
2 38 -0.035981
3 37 0.223379
4 36 0.387465
5 35 0.325961
6 34 0.039811
7 33 -0.317256
8 32 -0.520533
9 31 -0.416778
10 30 -0.036271
11 29 0.406232
12 28 0.634285
13 27 0.485255
14 26 0.025390
15 25 -0.476835
16 24 -0.710942
17 23 -0.520577
18 22 -0.009122
19 21 0.517382

20 0.737995

Consequently, we take the first derivative of eq. (7) which
after some algebra leads to the second order linear differential
equation

g2(w)[(1−w2)
d2f

dw2
−w

df

dw
]−(1−w2)g1(w)

df

dw
+g0(w)f = 0 ,

(63)
where

g2(w) = (w − wp)(w − ws)(w − wm) , (64)

g1(w) = (w − wp)(w − ws) − (w − wm)(w − wp + ws

2
) ,

g0(w) = n2(w − wm)3 .

This differential equation being linear is suitable for the
solution with the power series. By substituting

f(w) =

n
∑

m=0

b(m)wm , (65)

f ′(w) =
n−1
∑

m=0

(m + 1)b(m + 1)wm ,

f ′′(w) =

n−2
∑

m=0

(m + 2)(m + 1)b(m + 2)wm .

in the linear differential equation (63) and comparing the
coefficients with the same power ofw we obtain a set of
recursive formulae concisely summarised in Tab. IV. Note that
the recursion is a convolution with time varying coefficients
{d(1), d(2), d(3), d(4), d(5), d(6)}

d(6)b(m+3−6) =

5
∑

µ=1

d(µ)b(m+3−µ) ; m = n+2, . . . , 3

(66)
which in each consecutive step predicts a new coefficient of
the Zolotarev polynomial. The nonzero initial value is taken
b(n) = 1 then all valuesb(m) for m = n − 1, . . . , 2, 1, 0 are

obtained and finally re-normalisation is performed using the
value of the Zolotarev polynomial atw = 1.

The algorithm gives not only an efficient code for the
evaluation of the Zolotarev polynomials but provides a purely
analytical view on the coefficients. By analytic iteration we
can obtain general relations among the coefficients as

b(n − 1)

nb(n)
= wm − wq , (67)

4b(n − 2)

nb(n)
= 3wm(wm − wq) + (2n − 3)(wm − wq)

2

+wpws − wmwq − 1 . (68)

It is worth to note that coefficientb(n−1) is related toσ from
eq.(1) through the transformation (6)

−b(n − 1)

b(n)
= σcn2(u0|κ) − sn2(u0|κ) , (69)

which givesσ used by N. I. Achieser [2]

σ =
2sn(u0|κ)

cn(u0|κ)dn(u0|κ)

[

1

sn(2u0|κ)
− Z(u0)

]

− 1 . (70)

VI. CHEBYSHEV EXPANSION OFZOLOTAREV

POLYNOMIALS

We wrote the linear differential equation purposely in the
form (63) which suggests to use Chebyshev polynomials of the
first kind Tm(w) in the expansion of Zolotarev polynomials

Zp,q(w) =

n
∑

m=0

a(m)Tm(w) . (71)

Indeed, using the differential properties of Chebyshev polyno-
mials for an expansion

f(w) =

n
∑

m=0

a(m)Tm(w) , (72)

we can write

(1 − w2)
d2f

dw2
− w

df

dw
= −

n
∑

m=0

m2a(m)Tm(w) , (73)

(1 − w2)
df

dw
=

n
∑

m=0

ma(m)[Tm−1(w) − wTm(w)] . (74)

The linear differential equation (63) has then the form

−
n

∑

m=0

m2a(m)g2(w)Tm(w)

−
n

∑

m=0

ma(m)g1(w)[Tm−1(w) − wTm(w)] (75)

+

n
∑

m=0

a(m)g0(w)Tm(w) = 0 .

In order to compare the coefficients associated with the
Chebyshev polynomialsTm(w) of the same order we have to
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TABLE IV

BACKWARD RECURSIVE ALGORITHM FOR EVALUATION OFZOLOTAREV POLYNOMIALS Zp,q(w) =
∑n

m=0
b(m)wm

given
p, q

initialisation
n = p + q

eq. (9) wp = 2 cd2(u0|κ) − 1

eq. (10) ws = 2 cn2(u0|κ) − 1

wq =
wp + ws

2

eq. (19) wm = ws + 2
sn(u0)cn(u0)

dn(u0)
Z(u0)

β(n) = 1

β(n + 1) = β(n + 2) = β(n + 3) = β(n + 4) = 0

body
(for m = n + 2 to 3)

d(1) = (m + 2)(m + 1)wpwswm

d(2) = −(m + 1)(m − 1)wpws − (m + 1)(2m + 1)wmwq

d(3) = wm(n2w2
m − m2wpws) + m2(wm − wq) + 3m(m − 1)wq

d(4) = (m − 1)(m − 2)(wpws − wmwq − 1) − 3wm(n2wm − (m − 1)2wq)

d(5) = (2m − 5)(m − 2)(wm − wq) + 3wm[n2 − (m − 2)2]

d(6) = n2 − (m − 3)2

β(m − 3) =
1

d(6)

5
∑

µ=1

d(µ)β(m + 3 − µ)

(end loop on m)
normalisation

s(n) =

n
∑

m=0

β(m)

(for m = 0 to n)

b(m) = (−1)p β(m)

s(n)
(end loop on m)

remove all the multiplicationswkTm(w). Using the recursive
formula for Chebyshev polynomials

(2w)1Tm(w) = Tm−1(w) + Tm+1(w) ,

(2w)2Tm(w) = Tm−2(w) + 2Tm(w) + Tm+2(w) ,

(2w)3Tm(w) = Tm−3(w) + 3Tm−1(w) (76)

+3Tm+1(w) + Tm+3(w) .

and rearranging the summation in equation (75) we ar-
rive at a recursive evaluation of the coefficientsa(m).
It is again a convolution with time varying coefficients
{c(1), c(2), c(3), c(4), c(5), c(6), c(7)}

c(7)a(m+4−7) =
6

∑

µ=1

c(µ)a(m+4−µ) ; m = n+2, . . . , 3

(77)
The first nonzero value is takena(n) = 1, then all values
a(m) for m = n−1, . . . , 2, 1, 0 are obtained and finally renor-
malised. The algorithm is concisely summarised in Tab. V.
Our algorithm gives directly the impulse response coefficients

h(m)

a(0) = h(M) ,

a(m) = 2h(M − m) (78)

of a narrow band FIR filter of lengthN = 2M + 1 = 2(p +
q) + 1. Its transfer function is given as

H(z) =

N−1
∑

ν=0

h(ν) z−ν = z−M

[

a(0) +

M
∑

m=1

a(m)Tm(w)

]

= z−MZp,q(w) . (79)

Solely from the numerical point of view the latter algorithmis
rather advantageous as it offers a lower range of coefficients
which affects the rounding error.

VII. FIR F ILTERS APPLICATIONS

Both recursive algorithms for the coefficients of Zolotarev’s
polynomials provide fundamental tools for the design of
several types of FIR filters.

First, we consider the design of a bandpass filter. The
proposed procedure for designing optimal bandpass FIR filters
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TABLE V

BACKWARD RECURSIVE ALGORITHM FOR EVALUATION OFZOLOTAREV POLYNOMIALS Zp,q(w) =
∑n

m=0
a(m)Tm(w)

given
p, q

initialisation
n = p + q

eq. (9) wp = 2 cd2(u0|κ) − 1

eq. (10) ws = 2 cn2(u0|κ) − 1

wq =
wp + ws

2

eq. (19) wm = ws + 2
sn(u0)cn(u0)

dn(u0)
Z(u0)

α(n) = 1

α(n + 1) = α(n + 2) = α(n + 3) = α(n + 4) = α(n + 5) = 0

body
(for m = n + 2 to 3)

8c(1) = n2 − (m + 3)2

4c(2) = (2m + 5)(m + 2)(wm − wq) + 3wm[n2 − (m + 2)2]

2c(3) =
3

4
[n2 − (m + 1)2] + 3wm[n2wm − (m + 1)2wq ] − (m + 1)(m + 2)(wpws − wmwq)

c(4) =
3

2
(n2 − m2) + m2(wm − wq) + wm(n2w2

m − m2wpws)

2c(5) =
3

4
[n2 − (m − 1)2] + 3wm[n2wm − (m − 1)2wq ] − (m − 1)(m − 2)(wpws − wmwq)

4c(6) = (2m − 5)(m − 2)(wm − wq) + 3wm[n2 − (m − 2)2]

8c(7) = n2 − (m − 3)2

α(m − 3) =
1

c(7)

6
∑

µ=1

c(µ)α(m + 4 − µ)

(end loop on m)
normalisation

s(n) =
α(0)

2
+

n
∑

m=1

α(m)

a(0) = (−1)p α(0)

2s(n)
(for m = 1 to n)

a(m) = (−1)p α(m)

s(n)
(end loop on m)

is a simplified version of that given by X. Chen and T. W. Parks
[3]. It is free of the transformation from(−1, 1) ∪ (α, β) to
the digital domain(−1, ws) ∪ (wp, 1) and it does not require
any FFT algorithm. Auxiliary parametersϕp, ϕs related to the
partition of the quarter-periodK are introduced

p

n
K(κ) +

q

n
K(κ) = F (ϕs|κ) + F (ϕp|κ) = K(κ) , (80)

where
p

n
K(κ) = F (ϕs|κ) ,

q

n
K(κ) = F (ϕp|κ) (81)

are incomplete elliptic integrals of the first kind. The new
auxiliary parameters reduce the computation of the elliptic
function to the standard trigonometric functions as

sin ϕs = sn
( p

n
K(κ)

)

, (82)

sin ϕp = sn
( q

n
K(κ)

)

. (83)

The procedure is as follows.

1) Specify the desired stopband edgesωp < ωs and
stopband rippleδ.

2) Evaluate the modulus of Jacobi’s elliptic functionsκ for

ϕs =
ωsT

2
andϕp =

π − ωpT

2

κ′ =
1

tan(ϕs) tan(ϕp)
. (84)

3) Compute the minimum degreen needed to satisfy the
attenuation of the stopband ripples. This requires the
simultaneous solution of partition equation (80) and the
degree equation

n =
ln(ym +

√

y2
m − 1)

2σmZ( p
n

K(κ)|κ) − 2Π(σm, p
n

K(κ)|κ)
, (85)

where
ym = 100.05δ (86)
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TABLE VI

COMPARISON OF DYNAMIC RANGE OF COEFFICIENTS FOR

REPRESENTATION OF POLYNOMIALZ3,6(u|0.682) FROM FIG. 6

m a(m) b(m)
0 0.098598 -0.1674
1 0.097937 -9.2167
2 -0.098642 6.6731
3 -0.193401 132.4135
4 -0.093506 -23.7022
5 0.095518 -477.1399
6 0.182318 28.5587
7 0.085744 630.9074
8 -0.088768 -11.3623
9 -1.085798 -277.9644

corresponds to the maximum of the Zolotarev poly-
nomial at the pointwm. The degree equation fol-
lows from eqs. (16), (17), (24) and (27). Note
that it is a true degree equation as all variables
σm,Π(σm, p

n
K(κ)|κ), Z( p

n
K(κ)|κ) are due to the par-

tition equation (80) explicitly independent ofn.
4) Use eq. (81) to determine integer values ofp andq.
5) Compute the actual values ofωp, ωs andωm as

wp = cos ωpT = 2sn2

( q

n
K(κ)

)

− 1 ,

ws = cos ωsT = 1 − 2sn2

( p

n
K(κ)

)

,

wm = cos ωmT = ws + 2
dn(u0)

sn(u0)cn(u0)
Z(u0) .

6) For integer valuesp andq carry out the algorithm giving
the impulse response coefficients

a(0) = h(M) ,

a(m) = 2h(M − m) . (87)
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Fig. 4. Bandpass filter of length 41 based on Zolotarev polynomial
Z5,15(u|0.77029) of degree 20, withωsT = 0.3023π, ωmT = 0.2520π
and ωpT = 0.2017π. Frequency responseH(ejω) is plotted versus the
normalised frequency. The ripples in the stopbands are less than -21.65 dB.

The FIR bandpass filters obtained are maximum ripple filters
so that the only available stopband edges are discretised by
eq.(80). This is naturally different from the filters designed by
the Parks-McClellan program where band edges are adjusted
by one or more extra zeros which are off the unit circle [6].
Zolotarev’s polynomials have no other zeros than those on
the unit circle and therefore they satisfy only the band-edge
requirements constrained by eq.(80). Strict approximation re-
quirements usually give such discrete values for the positions
of stopband/passband edges.
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Fig. 5. Complementary FIR filter pair with̄ωsT = 0.1717π transformed
from the bandpass in Fig. 4. Frequency responseH(ejω) is plotted versus
the normalised frequency.

Second, we design a complementary pair of FIR filters
based on a Zolotarev polynomial

Zp,q(w) =

n
∑

m=0

a(m)Tm(w) (88)

by linear transformation

w =
1 + wm

2
w̄ − 1 − wm

2
. (89)

Third, we introduce the design of almost equiripple double-
notch FIR filters. The procedure is based on the observation
that the odd part of a Zolotarev polynomial has two extra lobes
for which ∣

∣

∣

∣

1

2
(Zp,q(w) − Zp,q(−w))

∣

∣

∣

∣

> 1 , (90)

which are of the same magnitude. Substituting the odd part ofa
Zolotarev polynomial in a Chebyshev polynomial we generate
the transfer function of a double-notch FIR filter using

Q(w) = Tr(Zp,q(w)) . (91)

The transfer function of a double-notch FIR filter of length
2M + 1 = r(p + q) + 1 is then

H(z) = z−M

(

1 − Q(w)

Q(wmax)

)

. (92)
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Note that the maximum occurs atwmax which is slightly
different from the valuewm which belongs to the maximum
of a Zolotarev polynomial. In the example in Fig. 6 the
differences are as follows

wmax = ±0.5018 wm± = ±0.4977 . (93)

The ripples in the passband are not exactly equal but they fall
within the limit of ripples of an optimal single notch filter.
Such FIR filters will play an important role in filtering of the
sinusoidal interference harmonics.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
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Fig. 6. Odd part of Zolotarev polynomialZ3,6(u|0.682) of degree 9, with
ωsT = 0.3771π, ωmT = 0.3342π andωpT = 0.2912π and the frequency
response of the corresponding FIR double-notch filter generated byT4(x).
Frequency responseH(ejω) with notch frequencies specified byω0+T =
0.3327π andω0−T = 0.6673π is plotted versus the normalised frequency.
The ripples in the passband are less than 1 dB.

VIII. C ONCLUDING REMARKS

We have presented a purely algebraic solution for Zolotarev
polynomials which completely replaces so far used parametric
solutions for these polynomials. The recursive algorithmswe
have derived are well suited for the design of optimal narrow-
band FIR filters. The second algorithm leads directly to the
impulse response coefficients of a narrow-band filter. The core
of the solution is seen in linear differential equation for a
general Zolotarev polynomial which is to our knowledge a

new concept in approximation problems. The linear differential
equation then yields solutions for both representations (62)
and (71). Apart from usual FIR filters we have proposed
the design of almost equiripple double-notch FIR filters. The
algorithms give not only an efficient code for evaluation of
Zolotarev polynomials but provide a purely analytical view
on the coefficients.

There are more mathematical problems to be solved such as
the problem of distribution of the zeros or the orthogonality of
Zolotarev polynomials. The solutions of these problems will
presumably affect several signal processing algorithms.

IX. A PPENDIX I - EVALUATION OF MAXIMUM OF

ZOLOTAREV POLYNOMIALS

For Jacobi’s zeta function the addition theorem holds

Z(u|κ)+Z(v|κ)−Z(u+v|κ) = κ2sn(u|κ)sn(v|κ)sn(u+v|κ).

The addition theorem relates the single periodic functionZ(u)
to the double periodic Jacobi’s elliptic functionsn(u). This is
the reason why there is no algebraic relation which connects
Z(u) with sn(u), cn(u) anddn(u) [5] and why this formula
is often called quasi-addition theorem [4]. Consequently the
numerical evaluation ofZ(u) is usually performed using an
arithmetic-geometric mean procedure [1] omitting the addition
theorem. In our application the argumentu is attributed to the
specific discrete values of the half-period and the zeta function
is not necessarily evaluated independently of Jacobi’s elliptic
functions. For Jacobi’s zeta functionZ(u|κ) of a discrete
argumentum =

m

n
K(κ) we have used the addition theorem

to prove the algebraic formula [10]

[Z] = κ2

sn

(

1

n
K

)

n
( A − nB) [S] , (94)

where the abbreviated notation for vectors is introduced

[Z] =



























Z

(

n − 1

n
K

)

...

Z

(

2

n
K

)

Z

(

1

n
K

)



























(95)

[S] =



























sn

(

n − 1

n
K

)

sn
(n

n
K

)

...

sn

(

2

n
K

)

sn

(

3

n
K

)

sn

(

1

n
K

)

sn

(

2

n
K

)



























. (96)

In this equation (94) the upper triangular matrixU of units and
lower triangular matrixL of units, are used in the following
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sense

B = U − 1 , (97)

A = (n 1 − L ) ( L + U − 1) . (98)

Note that both A and B are singular matrices. The equation
(94) can be also written in a scalar form

Z
( p

n
K

)

=

κ2sn

(

1

n
K

)

n
× (99)

×
{

p

n−1
∑

m=1

sn
(m

n
K

)

sn

(

m + 1

n
K

)

−n

p−1
∑

m=1

sn
(m

n
K

)

sn

(

m + 1

n
K

)

}

.

The algebraic formula simplifies the evaluation of the position
of the maximum value of a Zolotarev polynomial (21). Its
matrix form (94) was successfully used for an efficient code
in Matlab. The evaluation of the discrete zeta function uses
the standard procedure for the elliptic functionsn.

function u=zeta(n,k)
% *******************************************
% * zeta(n,k) *
% * Jacobi’s Zeta Function of discrete *
% * argument K(k)/n *
% * evaluation based on addition theorem *
% * Z(u) + Z(v) - Z(u+v) = *
% * k*k*sn(u|k)*sn(v|k)*sn(u+v|k) *
% * Erlangen, June 1997, Miroslav Vlcek *
% *******************************************
quarter=ellipke(k.*k);
s=ellipj((1:n)*quarter/n, k.*k);
v=s(n-(1:n-1)).*s(n+1-(1:n-1));
a=diag(n-1:-1:1)*ones(n-1);
b=ones(n-1)-tril(ones(n-1));
u=k.*k*s(1)/n*(a-n*b)*v’;

The elliptic integral of the third kindΠ(u, aκ) present a
far more formidable computational problem on account of
its dependence on three parameters. In our application the
parametera is attributed to the specific discrete values of the
half-period for which the addition formula holds

Π(u, p|κ) + Π(u, r|κ) − Π(u, p + r|κ) =

1

2
ln

1 − κ2sn( p
n

K)sn( r
n

K)sn(u)sn(p+r
n

K − u)

1 + κ2sn( p
n

K)sn( r
n

K)sn(u)sn(p+r
n

K + u)
+

+uκ2sn(
p

n
K)sn(

r

n
K)sn(

p + r

n
K) ≡ R(u, p, r|κ)

The addition formula for parameters has a similar form to that
of the zeta function so we can immediately write the algebraic
formula [10]

[Π] =
1

n
( A − nB) [R] , (100)

where the abbreviated notation for vectors is introduced

[Π] =

























Π(u,
n − 1

n
K |κ)

...

Π(u,
2

n
K |κ)

Π(u,
1

n
K |κ)

























(101)

[R] =



















R(u, n − 1, 1|κ)

...

R(u, 2, 1|κ)

R(u, 1, 1|κ)



















. (102)

The notation in equation (100) is the same as in equation (94).
The algebraic representation of the elliptic integral of the third
kind of the discrete parameter (100) reduces the evaluationof
the maximum value of a Zolotarev polynomial to the standard
elliptic function sn. The formula was used for an efficient
code in Matlab.

function f=ellipi(u,n,k)
% *******************************************
% * f=ellipi(u,n,k) *
% * Elliptic integral of the third kind *
% * of discrete parameter K(k)/n, *
% * argument u and modulus k *
% * evaluation based on addition theorem *
% * for parameters *
% * P(u,a) + P(u,b) - P(u,a+b) = R(u,a,b) *
% * Erlangen, July 1997, Miroslav Vlcek *
% *******************************************
quarter=ellipke(k*k);
si=ellipj(u,k.*k);
s=ellipj((1:n)*quarter/n,k*k);
sp=ellipj((1:n)*quarter/n+u,k*k);
sm=ellipj((1:n)*quarter/n-u,k*k);
v=u*k*k*s(1)*s(n-(1:n-1)).*s(n+1-(1:n-1));
nu=1-k*k*s(1)*si*s(n-(1:n-1)).*sm(n+1-(1:n-1));
de=1+k*k*s(1)*si*s(n-(1:n-1)).*sp(n+1-(1:n-1));
r=log(nu./de)/2 + v;
a=diag(n-1:-1:1)*ones(n-1);
b=ones(n-1)-tril(ones(n-1));
f=flipud(1/n*(a-n*b)*r’);

X. A PPENDIX II - RELATION BETWEEN CHEBYSHEV AND

ZOLOTAREV POLYNOMIALS

The Chebyshev polynomials of the first kindTn(x) are
defined as

Tn(x) =
1

2

[

(x +
√

x2 − 1)n + (x −
√

x2 − 1)n
]

. (103)

As the following relation holds

(x +
√

x2 − 1)(x −
√

x2 − 1) = 1 , (104)
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we can rewrite equation (103)

Tn(x) =
1

2

[

(x +
√

x2 − 1)n + (x −
√

x2 − 1)n
]

=
1

2
(λn + λ−n) . (105)

It is clear that
x =

1

2
(λ + λ−1) , (106)

and finally we obtain the formula

Tn

(

1

2
(λ + λ−1)

)

=
1

2
(λn + λ−n) (107)

which gives a straightforward relation of a Zolotarev polyno-
mial to the Chebyshev polynomial, eqs. (25) and (26).
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