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Abstract

Driver support systems of intelligent vehicles will predict potentially dangerous situations in heavy traffic, help
with navigation and vehicle guidance and interact with a human driver. Important information necessary for
traffic situation understanding is presented by road signs. A new kernel rule has been developed for road sign
classification using the Laplace probability density. Smoothing parameters of the Laplace kernel are optimized
by the pseudo-likelihood cross-validation method. To maximize the pseudo-likelihood function, an Expectation-
Maximization algorithm is used. The algorithm has been tested on a dataset with more than 4 900 noisy images.
A comparison to other classification methods is also given.
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1. Road Sign Recognition

In an intelligent vehicle a Driver Support Sys-
tem (DSS) should work as a driver copilot, con-
tinuously monitoring the driver, vehicle and the
environment in order to facilitate human decisions
about immediate vehicle guidance and navigation
(Nagel). To be able to help the driver with decision
making, the DSS must understand the current
traffic situation. Therefore, it should create and
maintain a model of its neighborhood. Because
of the dominant role of visual information for the
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human driver, computer vision methods are of-
ten used in intelligent vehicle prototypes for the
creation of such model. Road signs offer, among
the other traffic devices, a lot of important infor-
mation about the current traffic situation. Two
basic road sign groups exist – ideogram-based and
text-based signs. While the first group uses sim-
ple ideographs to express the sign meaning, the
second one contains road signs with texts, arrows
and other symbols. This article is concerned with
the recognition of ideogram-based road signs using
statistical pattern recognition methods. A compre-
hensive study of road sign recognition presented by
Lalonde and Li (1995) compiles information about
related algorithms, research groups and results.
Several research projects dealing with the road



sign recognition have been reported. Few of them
have lead to intelligent vehicle prototypes (e.g.
VITA II vehicle developed by the research team
at the University Koblenz-Landau together with
Daimler-Chrysler, Priese et al., 1994). An often
used approach for road sign recognition is a corre-
lation method. A normalized image is created for
each road sign type. It is applied as a template to
a number of places in the traffic scene image. Tem-
plate positions with the highest similarity values
are then labeled by the corresponding sign codes.
As the correlation method combines both the de-
tection and classification stages it is an efficient
procedure for the fast recognition of a few sign
types. On the other hand, a general method sep-
arating the sign detection and classification steps
may be more convenient as the number of sign
types grows. The most common approach to road
sign detection is based on a color segmentation
method (Priese et al., 1994). The classification is
then performed by a neural network. The detected
image region is used as network input and image
pixels are taken directly as features (Escalera et
al., 1997; Franke et al., 1998).

Fig. 1. Differences between European road signs (sign A12
”Children”)

There are some issues specific to the recognition of
road signs :
• The recognition of objects in outdoor scenes

is difficult due to variable illumination condi-
tions.
• Images acquired from a moving car suffer from

car vibrations and motion blur.
• Sign boards are often deteriorated by weather

conditions, scratches and dust.

• There exist international standards, but real
road signs considerably differ from them (see
figure 1). The road sign classifier must take
into account many sign variants. It is neces-
sary to provide a large set of real training sam-
ples – standards themselves are not a sufficient
source for classifier learning.
• The recognition method must be effective

enough to be implemented in a real-time en-
vironment.
• No standard databases of road signs for evalu-

ation of particular classification method exist
(most of the research is commercial and there
is no access to such resources).

This paper describes the classification module
of the Road Sign Recognition System (RS2) which
has been designed at the Faculty of Transporta-
tion Sciences, CTU Prague. Contrary to most
of the presented studies, RS2 uses local orien-
tations of edges in the image for the road sign
detection (Ĺıbal et al. 1996,1997,1998). The de-
tection algorithm searches the traffic scene image
for geometrical shapes corresponding to road sign
boards. The search is performed by a hierarchical
template matching procedure. The detection tem-
plate is able to find geometrical shapes rotated
in ±5◦ range from the basic position. The size of
detected objects in the traffic scene image changes
from 15 to 150 pixels. Road sign boards may be
also partially occluded (missing triangle corner or
part of a circle border does not influence the de-
tection result). However, the algorithm does not
respond to strong shape distortions at all.

2. Classification Algorithm

The input of the RS2 classification module is a
list of candidate regions containing some structures
resembling the road sign boards. The goal is to la-
bel these regions by the apropriate road sign codes
or to reject them. The coarse meaning of the road
sign (e.g. warning or prohibition) is presented by
the sign shape and the color combination. The ex-
act sign meaning is then specified by the ideogram
itself. This apriori knowledge is used for the de-
composition of the whole recognition problem into
several smaller ones. Therefore, the classification
module of RS2 works as a decision tree with sev-
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eral node classifiers (Pacĺık, 1998). The decision
tree approach has several advantages to the single-
classifier method. The first one is the reduction of
the class count per the decision tree node. More-
over, each particular classifier may exploit the most
descriptive features for its task. Satisfactory class-
fication results are also reached using a smaller
number of features compared to a single classifier
(Pacĺık et al., 2000). The misclassification risk be-
tween different sign groups is reduced as the de-
cision is made by a multi-stage system. This is a
valuable property as the exchange of e.g. the closed
to all vehicles sign with no parking is a fatal sys-
tem error. An important feature of the decision
tree approach is also the existence of partial results.
Small images of more distant signs often lack clear
ideogram data. The decision tree then reports at
least the road sign type (e.g. prohibition). The re-
jection of many false alarms is also made at early
tree levels.

2.1. Color Segmentation

The color segmentation method is used to move
from the input RGB color space to task specific
colors. There exist advanced segmentation meth-
ods which are robust but also have considerable
computational demands (Priese et al. 1994). A
compromise between segmentation reliability (ro-
bustness) and speed has to be made. The HSV
(Hue, Saturation, Value) color space is used be-
cause of its similarity to the human perception
of colors. It is a desirable feature as the segmen-
tation algorithm separates six basic colors used
in the road sign design (white, black, red, blue,
green and yellow). To segment achromatic colors
(white and black) the value component of HSV
color model is thresholded. Other colors are ob-
tained by thresholding the hue component (Aldon
and Pujas, 1995). Thresholds were set-up using
a set of real traffic scenes with variable illumina-
tion conditions. The segmentation algorithm is, in
fact, pixel-based classification into six classes. By
this method, even adversely illuminated road sign
boards are processed correctly and the algorithm
is very fast. However, wrong color segmentation
has fatal consequences to the classification result.

2.2. Feature Vector Construction

Features for the statistical pattern classifier are
computed on binary images of the road sign inte-
rior. Colors to be binarized depend on the particu-
lar road sign group (e.g. white for obligatory signs
or black for warning signs). Images on the classi-
fier input may be rotated in a pre-defined range
±5◦ given by the detection template. On the other
hand, the input image size varies considerably and
used features must be therefore invariant to the
scale change. Several moment invariant features
have been used. The unscaled spatial moment of the
order m,n (F (j, k) is a binary image function) is :

M(m,n) =
J∑
j=1

K∑
k=1

(xk)m(yj)nF (j, k). (1)

The translation-invariant unscaled central moment
of the order m,n is calculated using expression :

UU (m,n) =
J∑
j=1

K∑
k=1

[xk − x̄k]m[yj − ȳj ]nF (j, k),(2)

where x̄k and ȳj are image centroid coordinates.
The scale change invariant normalized unscaled
central moments V has been used which is given
by the formula :

V (m,n) =
UU (m,n)
[M(0, 0)]α

, where α =
m+ n

2
+ 1, (3)

where M(0, 0) stands for the image size. Another
feature useful especially for the separation of cir-
cular objects is compactness. It is calculated using
binary object area Ao and perimeter Po in the fol-
lowing way :

comp =
P 2
o

4πAo
. (4)

For circles, compactness comes near unity while
for oblong objects it takes value comp ∈ (1.0,∞).
The perimeter is approximated by the pixel count
of the object boundary which is constructed by the
methods of mathematical morphology.
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2.3. Laplace Kernel Classifier

Let us define the classification problem as an
allocation of the feature vector x ∈ RD to one of C
mutually exclusive classes knowing that the class of
x, denoted by ω, takes values in Ω = {ω1, . . . , ωC}
with probabilities P (ω1), . . . , P (ωC), respectively
and that x is a realization of a random vector X
characterized by a conditional probability density
function f(x|ω), ω ∈ Ω.

With the usual kernel approach to classification
(Devroye et al., 1996; Sain, 1994), the unknown
class conditional densities in the Bayes rule are
replaced by the kernel density estimates obtained
from the independent training data xω1 , ...,x

ω
Nω

,
ω ∈ Ω. The associated sample-based decision rule
is therefore a plug-in version of the Bayes rule with
the kernel density estimates used in the place of the
class conditional densities. A nonparametric esti-
mate of the ω-th class conditional density f(x|ω)
provided by the kernel method is

f̂(x|ω) =
1

NωhDω

Nω∑
i=1

K

(
x− xωi
hω

)
, (5)

where K(·) is a kernel function that integrates to
one and hω is a smoothing parameter (Devroye et
al., 1996). In most applications, the kernel K is
fixed and the smoothing parameter hω is a function
of the ω-th training set of the size Nω, such that
limNω→∞ hω(Nω) = 0 and limNω→∞Nωhω(Nω) =
∞. Usually, the kernel K(·) is required to be non-
negative and symmetric. If K(x) ≥ 0 then the
kernel density estimate f̂(x|ω) can be interpreted
as a mixture of Nω component densities in equal
proportions. Let us consider the following multi-
variate product kernel estimate of f(x|ω)

f̂(x|ω) =
1

Nωhω1 . . . hωD

Nω∑
k=1


D∏
j=1

K

(
xj − xωkj
hωj

)
where xj is the j-th component of the vector x and
xωi = (xωi1, ..., x

ω
iD), i = 1, ..., Nω. It means that

the same univariate kernel K is used in each di-
mension but with a different smoothing parameter
hωj for each dimension. The choice for the univari-
ate kernel function investigated here is the Laplace
density function

fL(x;µ, σ) =
1

2σ
exp

(
−|x− µ|

σ

)
, (6)

where x ∈ R, µ ∈ R, σ ∈ (0,∞).

Therefore, the Laplace kernel estimate of f(x|ω)
becomes

f̂(x|ω) =
1
Nω

Nω∑
i=1

D∏
j=1

1
2hωj

exp
(
−
|xj − xωij |
hωj

)
. (7)

We can rewrite Eq. 7 in the form

f̂(x|ω) =
1
Nω

Nω∑
i=1

fLi(xi; xωi ,Hω), (8)

where Hω is D×D diagonal matrix with diagonal
elements hω1, ..., hωD respectively, common to all
densities fLi, i = 1, ..., Nω.

2.4. Estimation of Smoothing Parameters

As the choice of the kernel function is not so im-
portant, the usual approach in constructing f̂(x|ω)
is to fix the kernel K in Eq. 5. and then asses
the smoothing parameters from the observed data
(e.g. McLachlan, 1992). Appropriate selection of
the smoothing parameters is crucial in the esti-
mation process. The dependence of the kernel es-
timator performance on the smoothing parame-
ters has led to many proposals (for example Mean
Squared Error or Integrated Square Bias Criteria).
The standard approach for the determination of
unknown parameters hω1, ..., hωD in the kernel es-
timate (Eq.8), postulated for the ω-th class con-
ditional density from given data xω1 , ...,x

ω
Nω

, is to
use maximum likelihood (ML) estimation. To com-
pute the ML estimates of the unknown parame-
ters we maximize the corresponding log-likelihood
function.

L =
Nω∑
k=1

ln f̂(xωk |ω). (9)

The log-likelihood functionL of the kernel estimate
given in Eq. 8 with the smoothing matrix Hω is
known to attain an infinite maximum for |Hω| →
0, because f̂(x|ω) approaches zero at all x except
at x = xωj , j = 1, 2, ..., Nω, where it is 1/Nω times
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the Dirac delta function. This undesirable property
can be removed by using the cross-validated log-
likelihood (Duin, 1976)

L(Hω) =
Nω∑
k=1

ln f̂−k(xωk |ω), (10)

where

f̂−k(xωk |ω) =
1

Nω − 1

Nω∑
i=1
i 6=k

fL(xωk ; xωi ,Hω) (11)

denotes the kernel density estimate f̂(x|ω),
formed from xωi , i = 1, 2, ..., Nω, i 6= k. In order to
maximize the criterion in Eq. 10, we can modify
the Expectation-Maximization (EM) algorithm
(Dempster et al., 1977) as follows :
E-step :

p(t)(xωi |xωk ) =
fL(xωk ; xωi ,Hω)

Nω∑
i=1
i 6=k

fL(xωk ; xωi ,Hω)
(12)

M -step :

h
(t+1)
ωl =

1
Nω

Nω∑
k=1

Nω∑
i=1
i 6=k

p(t)(xωi |xωk )|xωkl − xωil|, (13)

where t = 0, 1, ....

3. Algorithm Implementation

The classification algorithm with the Laplace
kernel rule is presented as algorithm 1. In order to
estimate the density function faster, the equation 7
has been rewritten as

f̂(x|ω) =
1

2DNω
D∏
k=1

hωk

Nω∑
i=1

exp

− D∑
j=1

|xj − xωij |
hωj

.
The operator ”/. ” on line 10 denotes division of cor-
responding vector elements. The EM algorithm for
estimation of the smoothing parameters by maxi-
mization of the cross-validated log-likelihood func-
tion is given as algorithm 2.

Considerable acceleration of classification has
been reached using the sample rejection method.
The method assumes that wrong decisions are
characterized by high values of the sum inside the

Algorithm 1 Kernel classifier with Laplace kernel
1: input: vector x (unknown pattern)
2: output: class code
3: training set: patterns xωc1 , . . . ,xωcNωc for

classes ωc, c = 1, ..., C
4: parameters: smoothing vector h; rejection

threshold reject
5: max = 0; maxclass = nil
6: for all classes ωc ∈ training set T do
7: classcontrib = 0
8: for all patterns xωci , i = 1, ..., Nωc do
9: work = abs(x− xωci )

10: work = work /. hc
11: classcontrib += exp(−

∑D
j=1 workj)

12: end for
13: classcontrib /= 2D ·Nωc ·

∏D
j=1 hcj

14: if classcontrib> reject and
classcontrib> max then

15: max = classcontrib
16: maxclass = ωc
17: end if
18: end for
19: return: maxclass

exponential (line 11, algorithm 1) while proper de-
cisions are characterized by lower ones. Therefore,
if the sum exceeds some threshold sr for a particu-
lar pattern xωci , the pattern is rejected from further
processing as being too distant. The modification
of pattern loop is presented as algorithm 3.
The rejection threshold sr is set up for particular
dataset according to the analysis of the histogram
of sum values for proper and wrong classifier deci-
sions. Although both groups overlap for real data,
a value of sr separating certainly void decisions
from good ones may be found. It follows from ex-
periments that the classification may be speeded
up for about 20% by the proper sr setting without
any impact to the classification results.

4. Experiments

A database of road sign images for classifier per-
formance evaluation has been acquired. It contains
1100 images from 45 road sign classes. Only the
sign boards, not whole traffic scene images have
been collected. The image size varies from 15 to 150
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Table 1

Experimental results - mean error rates and standard deviations of mean estimates in percent. The number of features
where the best result have been reached is given in parentheses

group classes samples Laplace [%] Gauss [%] mixture [%] ldc [%] qdc [%] knnc [%]

G1 17 1369 17.5± 0.4 (24) 18.2± 0.6 (14) 27.6± 1.4 (18) 28.2± 0.5 (24) 23.8± 1.3 (14) 20.8± 0.8 (8)

G2 3 720 2.4± 0.6 (6) 2.6± 0.5 (12) 9.0± 0.8 (6) 13.9± 0.9 (6) 15.3± 0.6 (8) 8.9± 0.9 (4)

G3 5 516 1.2± 0.3 (22) 1.6± 0.5 (24) 1.6± 0.4 (20) 2.0± 0.5 (24) 1.6± 0.3 (22) 0.7± 0.6 (12)

G4 2 222 0.6± 0.4 (18) 1.2± 0.7 (18) 0.9± 0.6 (22) 0.3± 0.3 (14) 0.3± 0.3 (16) 0.9± 0.6 (12)

G5 9 627 5.4± 0.8 (18) 5.3± 0.7 (18) 7.8± 0.9 (12) 5.1± 0.7 (12) 5.7± 0.8 (22) 6.3± 3.0 (20)

G6 2 557 0.7± 0.2 (10) 0.5± 0.2 (8) 4.2± 0.8 (16) 1.9± 0.3 (14) 2.4± 0.4 (12) 1.1± 0.4 (8)

G7 2 420 0.8± 0.5 (14) 0.9± 0.3 (14) 1.2± 0.6 (6) 0.9± 0.5 (14) 0.9± 0.5 (16) 1.9± 0.5 (6)

G8 2 216 4.0± 1.1 (12) 4.4± 1.1 (10) 6.6± 1.0 (20) 4.4± 0.9 (24) 4.0± 1.4 (24) 5.2± 1.0 (10)

G9 3 298 1.5± 0.5 (14) 1.3± 0.6 (14) 3.7± 1.3 (12) 0.9± 0.4 (18) 1.3± 0.4 (10) 0.9± 0.4 (6)

pixels and images are stored in 24-bit color cod-
ing. All images have been acquired by the Olym-
pus Camedia digital camera under general illumi-
nation conditions. Images were divided into nine
groups according to their shape and color combi-
nation. The following list contains a brief descrip-
tion, typical road sign and color combination for
each sign group :

G1 triangular warnings (e.g.Danger), (red,white,black)

G2 circ. Closed to all vehicles and One-way, (red,white)

G3 circ. prohibitions,Speed limits, (red,white,black)

G4 circ. No Stopping, (red,blue)

G5 circ. obligatory, driving directions, (blue,white)

G6 upside triangle, Give way, (red,white)

G7 octagon, Stop! Major road ahead, (red,white)

G8 diamond, Right of way, (yellow,black,white)

G9 square, Pedestrian crossing, (blue,black,white)

Additional testing images were generated from the
original ones by random scaling from 15 to 150 pix-
els, random rotation by ±5◦ and by adding Gaus-
sian noise. Thus, the experimental database con-
tains 4 945 noisy road sign images from 45 classes
in nine groups.

The feature computation process starts with
HSV color segmentation. From the segmented im-
age several binary images are generated using col-
ors specific for the particular road sign group. Fea-
tures are then computed on the binary images. For
each dataset, 24 features have been used. The only
exception is the group G2 (separation of Close-to-

all-vehicles and One-way from other prohibition
signs) where just 12 features have been computed
on the white color in the segmented image. All the
data were preprocessed by standardization. The
same testing method has been used for all exper-
iments. Each dataset was split randomly into ten
parts. Nine of them were used for training and
the remaining one for classifier testing. Ten such
experiments were performed to complete the rota-
tion through the whole dataset. Estimated means
of measured error rates and corresponding stan-
dard deviations of the mean estimates are given in
the table 1 for following six classifiers :
• Laplace - product kernel classifier with Laplace

kernel, vector of smoothing parameters
• Gauss - product kernel classifier with Gaussian

kernel, vector of smoothing parameters
• mixture - linear mixture of Gaussian probability

densities, diagonal covariance matrix
• ldc - linear classifier assuming normal densities

and equal covariances
• qdc - quadratic classifier assuming normal den-

sities
• k-NN - nearest neighbor classifier (k = 1)
Number of component counts have been tested for
Gaussian mixture classifier and the best result was
given. As the estimation of full covariances caused
numerical problems diagonal covariance matrices
have been used instead. For all the experiments
the individual feature selection method with Fisher
criterion (Fukunaga, 1990) has been used. Features
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Algorithm 2 EM algorithm for smoothing param-
eters optimization

1: input: classes ωc, c = 1, ..., C; D-dimensional
patterns xωc1 , . . . ,xωcNωc for every class ωc;

2: output: smoothing vectors hc, c = 1, . . . , C
3: parameters: maximum difference between

two following estimates dif
4: hcd = 1.0, c = 1, . . . , C, d = 1, . . . , D // init.
5: for all classes ωc such that c = 1, . . . , C do
6: lastd = 100.0, for d = 1, . . . , D
7: repeat
8: // fill density matrix f
9: for all patterns xi and xk such that i, k =

1, . . . , Nωc ,i 6= k do
10: work = abs(xi − xk)
11: work = work /. hc
12: f(i, k) = exp(−

∑D
j=1 workj)

13: f(i, k) = f(i, k)/(2
∏D
j=1 hcj)

14: end for
15: // combine E and M steps
16: for all features d, d = 1, . . . , D do
17: temp = 0
18: for all patterns xi and xk such that

i, j = 1, . . . , Nωc ,i 6= j do
19: p = f(i, k)/

∑Nωc
m=1,m6=i f(i,m)

20: temp += abs(xid − xkd) · p
21: end for
22: hcd = temp
23: end for
24: hc = hc /. Nωc
25: temp = max(last− hc)
26: last = hc
27: until temp >dif
28: end for

were sorted according to criterion values. Subsets
with n-best features (n = 2, 4, . . . , D, where D is
the dataset feature count) were stored. The num-
bers in table 1 are the best results attained by each
classifier and the corresponding feature size.

From results it follows, that basically two differ-
ent problem types exist in the road sign database.
The first is a set of easily separable datasets
G3,G4,G6,G7 and G9. On the other hand, there
are more difficult problems like G1,G2,G5 and G8.
The performance of the product kernel classifier
is generally high. In the case of easily separable

Algorithm 3 Sample rejection
1: for all patterns xωci do
2: work = abs(x− xωci )
3: work = work /. hc
4: temp = 0
5: for d = 1, . . . , D do
6: temp += workd
7: if temp > sr then
8: goto 12 // reject current sample
9: end if

10: end for
11: classcontrib += exp(−temp)
12: end for

classes it behaves comparably to other classifiers.
For difficult problems like groups G1 and G2 it
gives much better results as it fits the structure
of the data better than the other approaches. The
Laplace kernel classifier, presented in this paper,
gives comparable results to the classifier with the
Gaussian kernel. Nevertheless, the training of the
Laplace kernel classifier is six to ten times faster
than the training of the Gaussian one, depending
on the dataset. It is mainly caused by the faster
convergence rate of the classifier with the Laplace
kernel. Contrary to the k-NN classifier kernel clas-
sifiers weight the local distances by smoothing
which is estimated from the data. For some sign
groups (like G1 and G2) it can be an advantage to
use the kernel approach. However, k-NN classifier
performs better for other datasets like G3 or G9.
The results of the mixture classifier depend on the
quality of the supplied model and the amount of
data at hand. The number of components for each
class is given in advance and the model is then ini-
tialized by k-means clustering algorithm. If a large
number of components is used the training pro-
cedure (EM algorithm) often runs into numerical
problems.

5. Conclusion

The goal of the paper has been to show the be-
havior of the Laplace kernel classifier on the real
world problem like the road sign recognition and
to compare its performance with other methods.
It was tested on nine datasets with noisy road sign
images. Simple features computed on binary re-
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sults of color segmentation have been used. It has
been shown experimentally that the Laplace kernel
classifier offers high performance even for the dif-
ficult problems. The advantages of the presented
approach are fast computation and the efficient
way of learning (estimation of smoothing factors)
by the EM-algorithm based maximization of the
cross-validated log-likelihood function. The kernel
classifier uses the data itself for the construction of
the probability density estimate. This makes the
approach applicable to problems with small and
multimodal data sets e.g. in the area of the road
sign recognition. The disadvantage of kernel clas-
sifiers is that the whole training dataset is used for
each computation of the probability density. The
presented sample rejection method can reduce the
amount of computation by rejecting useless sam-
ples from the processing.
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