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Introduction

Although the history of a scientific discipline should be studied regardless of which year
and anniversary it is, with an attention to the idea development, the interdependence of
various topics and problems etc., a jubilee can represent a good opportunity to remind
some important events that influenced the forthcoming development, or to find some
new and unnoticed relations. Coincidentally, in the domain of game theory, the year
2004 is exceptionally rich in anniversaries; without an exaggeration, most key events in
the history of game theory have some jubilee this year.

Before we turn to some of the important historical events, let us remind the definition
and properties of one of the fundamental models of a medium generality used for the
investigation of real decision situations: a normal form game.

Definition 1. n-player normal form game is defined as the (2n + 1)-tuple

(Q; S1, S2, . . . , Sn; u1(s1, s2, . . . , sn), u2(s1, s2, . . . , sn), . . . , un(s1, s2, . . . , sn)) , (1)

where n ≥ 2 is a natural number; Q = {1, 2, . . . , n} is a given finite set whose elements
are called players ; for every i ∈ Q, Si is an arbitrary set, so-called set of strategies of
player i, and ui : S1 × S2 × · · · × Sn → R is a real function called payoff function of
player i. If all sets S1, S2, . . . , Sn are finite, the game (1) is called finite.
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The strategy s∗i is called equilibrium strategy of player i.

Definition 3. Consider a finite n-player normal form game (1). For each i ∈ Q denote
by mi the number of elements of the strategy set Si of player i. A mixed strategy of player i
is defined as the vector of probabilities p

i = (pi
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= 1,
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j ≥ 0 for all 1 ≤ j ≤ mi .

Thus a mixed strategy is a vector whose j-th element represents the probability with
which the player chooses the j-th strategy from his strategy set. For distinction, elements
of the strategy set Si are also called pure strategies.

Theorem 1 (J. Nash). Every finite normal form game has at least one equilibrium
point in mixed strategies.

350 ♣ The Beginning of Probability Calculus

As it is clear from the introduction, one of the pillars of game theory is the concept of
mixed strategy based on the concept of probability which is therefore indispensable to
reach some interesting results. The beginning of probability calculus is associated with
the correspondence of Pierre de Fermat (1607 – 1665) and Blaise Pascal (1623 –1̇662)
dated in 1654. Hence the true prehistory can start only after this event that happened
just 350 years ago and represents the first key milestone in the history of game theory.



320 ♦ James Waldegrave and Mixed Strategies

James Waldegrave (1684 – 1741), born 320 years ago, provided the first known mixed
strategy solution of a matrix game. It was related to the game le Her and described in
Waldegrave’s letter to Pierre Rémond de Montmort (1678 – 1719) dated on November 13,
1713. Let us briefly mention that the game le Her is played by two people, usually named
Peter and Paul. It begins when Peter deals Paul a single card at random from an ordinary
deck of cards (ace, two, . . . , king), then deals a single card to himself; neither player
sees the card dealt to the other one. The object of the game is to hold the card of the
higher value than the opponent. If Paul is not satisfied with the card dealt to him, he
may force Peter to exchange with him, with the exception that Peter has a king. If Peter
is not satisfied with the card that he holds afterwards, he is permitted to exchange it
for a card dealt from the deck at random; if the new card is a king, he must retain his
original card. Then the two players compare cards and the one with the higher card
wins. If both players hold cards of the same value, then Peter wins.

The game le Her was already investigated by de Montmort and Nicholas Bernoulli
(1687 – 1759) in their mutual correspondence in 1713. They came to the conclusion that
Paul should change every card less than 7 and hold all higher than 7, Peter should change
every card less than 8 and hold all higher than 8. In disputable cases, Bernoulli thought
both should change, de Monmort believed that no precept could be given.

James Waldegrave was looking for a strategy that maximizes the probability of
player’s win, whichever strategy was chosen by the opponent, that is, exactly in the
sense of today minimax principle. He came to the following mixed strategy solution
formulated in terms of black and white chips: Paul should choose the strategy ”change 7
and lower” with the probability 5/8 and the strategy ”hold 7 and higher” with the prob-
ability 3/8; Peter should choose the strategy ”change 8 and lower” with the probability
3/8 and the strategy ”hold 8 and higher” with the probability 5/8.

Although de Montmort published the correspondence related to le Her, including
Waldegrave’s solution, in an appendix to the second edition of the book [21], Walde-
grave’s solution remained almost unnoticed for a very long time.1

80 ♥ Mathematization of the Game Concept

In the period 1921–1928 whose mean value has the eightieth anniversary, after more
than two hundred years of a prehistory consisting of various isolated examples, the
mathematization of the game concept was accomplished.

In 1921–1927 Émile Borel (1871 – 1956) published a series of notes [4]–[6] on symmet-
ric two-player zero-sum games with a finite number n of pure strategies of each player.2

Borel was the first who attempted to mathematize the game of strategy (in the men-
tioned special case); he introduced the concept of method of play in the sense of today
pure strategy and he was looking for a solution in mixed strategies in the sense of today
minimax solution. In his 1921 paper Borel proved the existence of such a solution for
n = 3. Later, while searching a counterexample, he proved the same for n = 5, what
he described in [5]; still he believed it can not be done in general. In the paper [6] he
formulated the problem positively, nevertheless, he gave no proof.

1For more details on the game le Her and the relating history see e.g. [10] and [15].
2In Definition 1 it is S1 = S2 = S = {s1, . . . , sn}; u1(si, sj) = −u2(si, sj) = u2(sj , si) for all si, sj ∈ S.

The game can be described by the matrix (aij) where aij = u1(si, sj), si, sj ∈ S.



In 1928 the existence of the solution of any finite two-player zero-sum game in mixed
strategies was proved by John von Neumann (1903 – 1957), whose treatise [29] represents
a true milestone in the history of game theory: von Neumann provided a mathemati-
zation of a general finite n-player zero-sum game in the sense of Definition 1 and for
the special case of n = 2 he proved the existence of a minimax solution which is the
fundamental result of the theory of matrix games.3 In short:

Theorem (von Neumann). Consider a finite two-person zero-sum game. Denote with
h(p, q) the expected payoff to player 1 provided the players choose mixed strategies p, q .
Then there always exist mixed strategies (p∗, q ∗) for which

h(p∗, q∗) = max
p

min
q

h(p, q) = min
q

max
p

h(p, q).

In 1953 M. Fréchet published in Econometrica Savage’s English translations of Borel’s
notes [4]–[6] and designated Borel the initiator and von Neumann the founder of game
theory. This arouse a dispute over a priority which is not easy to judge. Borel did not
come to the fundamental result on solvability and his works had almost none influence
– the label initiator is therefore questionable. Von Neumann’s paper was published few
years later but it contained a comprehensive and exact exposition of general concepts of
game theory including the proof of minimax theorem and it had a substantial influence
on further development – these attributes support his founder label.

60 ♠ Game Theory as the Mathematical Discipline

The next important milestone is represented by the publication of the extended mono-
graph Theory of Games and Economic Behavior [30] in 1944, which was the result of
a fruitful collaboration of von Neumann and the economist Oskar Morgenstern (1902 –
1976). This event is usually considered as the beginning of the existence of game theory
as a ”fully-fledged” mathematical discipline. Von Neumann and Morgenstern started
with a detailed formulation of economical problem and showed the exceptionally broad
application possibilities of game theory in economy; then they settled the foundations
of an axiomatic utility theory. From all other topics, let us mention the general formal
description of a game of strategy, the comprehensive theory of finite two-player zero-sum
games and n-player zero-sum cooperative games with transferable payoffs.

The monograph stimulated a massive development of game theory and its applications
into various domains. Still, there remained many open problems. Antagonistic games
form only a small part of all decision situations; players may have no chance to cooperate
or redistribute payoffs. For this reason, special interest shall be devoted to J. F. Nash.

55 ♣ Nash Equilibrium

In 1949 John Forbes Nash wrote his Ph.D. thesis named Non-Cooperative Games, where
the concept of equilibrium point (today also Nash equilibrium) in the sense of Definition 2
was introduced and its existence was proven. The most important results of the thesis
were published in a short note [24] and in a more detailed paper [26] in 1950 and 1951.

3Shortly before the paper [29] was published, a brief report [28] containing an outline of the main
ideas appeared in Comptes Rendus. According to his own remarks, von Neumann developed his theory
independently of Borel’s works.



The second concept associated with the name of John F. Nash is Nash bargaining
solution concerning two-player cooperative games without transferable payoffs. Nash
suggested a system of axioms that a solution should satisfy and proved the existence of
unique solution with these properties.

50 ♦ Entrance of Game Theory into Political Sciences

In 1954 Lloyd Shapley and Martin Shubik published the paper [33] which represents one
of the earliest explicit applications of game theory to political sciences. The authors
used Shapley value, one of the solution concepts for cooperative games introduced by
Shapley one year earlier, to determine the power of the members of the United Nations
Security Council.

Many other works then appeared; let us mention at least the paper [18] by R. D. Luce
and A. A. Rogow from 1956, and the paper [32] by W. H. Riker from 1959. Soon the
theory of games found a crucial place in political sciences. Nowadays it is used for
modeling various situations related to elections, legislature, politics of interest groups,
lobbies, bargaining, etc. Not only facilitates it to solve particular problems, it provides
the exact terminology and methods – what is an underbelly of all social sciences. Many
of modern monographs on political sciences regard game theory as an inseparable part
of this discipline; the presentation of political sciences based on game theory is given for
example in publications of J. D. Morrow [22] or P. Ordershook [31].

Although game theory is not a ”cure-all” and it can’t offer an optimal solution to all
problems, it is a strong tool for analysis of a given situation and it induces the decision-
maker to think rationally and without emotions; this, in itself, often yields a general
acceptable solution.

30 ♥ Entrance of Game Theory into Evolutionary Biology

Nowadays game theory is the main tool for the investigation of conflict and cooperation
of animals and plants. As for zoological applications, the theory of games is used for
the analysis, modeling and understanding the fight, cooperation and communication of
animals, coexistence of alternative traits, mating systems, conflict between the sexes,
offspring sex ratio, distribution of individuals in their habitats, etc. Among botanical
applications we can find the questions of seed dispersal, seed germination, root compe-
tition, nectar production, flower size, sex allocation, etc.

In 1960’s several isolated works using a game-theoretical approach in biology ap-
peared.4 A historical milestone is represented by the short but ”epoch-making” paper
The Logic of Animal Conflict [19] by J. Maynard Smith and G. R. Price. This treatise,
published in 1973, stimulated a great deal of successful works and applications of game
theory in evolutionary biology; the development of the following decade was summarized
in Maynard Smith’s book Evolution and the Theory of Games [20]. Not only proved
game theory to provide the most satisfying explanation of the theory of evolution and
the principles of behavior of animals and plants in mutual interactions, it was just this
field which turned out to provide the most promising applications of the theory of games
at all. Is this a paradox? How is it possible that the behavior of animals or plants
prescribed on the base of game-theoretical models agree with the action observed in the

4Let us mention the works of R. C. Lewontin [17], W. D. Hamilton ( [12], [13] ) and R. L. Trivers [34].
Some ideas were foreshedowed by R. A. Fisher in 1930 [11], without the terminology of game theory.



nature? Can a fly or a fig tree, for example, be a rational decision-maker who evaluates
all possible outcomes and by the tools of game theory selects his optimal strategy? How
is it possible that even the less developed the thinking ability of an organism is, the
better game theory tends to work?

The explanation is simple: the players of the game are not taken to be the organisms
under study, but the genes in which the instinctive behavior of these organisms is coded.
The strategy is then the behavioral phenotype, i.e. the behavior preprogrammed by the
genes – the specification of what an individual will do in any situation in which it may
find itself; the payoff function is a reproductive fitness, i.e. the measure of the ability of
a gene to survive and spread in the genotype of the population in question. The main
solution concept of this model is the evolutionary stable strategy which is defined as a
strategy such that, if all the members of a population adopt it, no mutant strategy can
invade.5 In certain specific situations, this somewhat vague concept is expressed more
precisely.6

In short, to understand the basic principles of so-called ”genocentric” conception of
the evolution, it suffices to imagine that about four thousand million years ago a remark-
able molecule, so-called replicator , was formed by accident, that was able to create copies
of itself. The copies started to spread in the environment; During the replication some-
times a mistake or mutation occured, some of these mutations led to replicators that were
more successful in mutual contests and in reproduction. Some of them could discover
how to break up molecules of rival varieties chemically, others started to construct for
themselves containers, vehicles for their continued existence. Such replicators survived,
that had better and more effective ”survival machines”. Generation after generation,
the survival machines of genes, i.e. the organisms controlled by the genes, compete in
mutual contests; the genes that choose the best strategy for their machine spread them-
selves and step by step their learning proceeds. The result is that these machines act
in the same way as game theory would calculate – instead of the calculation they have
come to the equilibrium strategies by gradual adaptation and natural selection.7

An illustrative analogy of the slow evolution process is learning of an individual who
finds himself repeatedly in the same conflict situation during his relatively short lifetime.
Apparently the most interesting experiment was made in 1979 by B. A. Baldwin and
G. B. Meese with the Skinner sty: there is the snout-lever at one end of the sty, the food
dispenser at the other. Pressing the lever causes puring the food down a chute. Baldwin
and Meese placed two domestic pigs into this sty. Such couple always settles down into
a stable dominant/subordinate hierarchy. Which pig will press the lever and run across
the sty and which will be sitting by the food trough? The situation is schematically
illustrated in Figure 1.

The strategy ”If dominant, sit by the food trough; if subordinate, work the lever”
sounds sensible, but would not be stable. The subordinate pig would soon give up
pressing the lever, for the habit would never be rewarded. The reverse strategy ”If

5[20], p. 204.
6For example, the pairwise contests in an infinite asexual population can be modelled by a two-player

normal form game and the evolutionary stable strategy I is a strategy such that, for all J 6= I it is
either u1(I, I) > u1(J, I), or u1(I, I) = u1(J, I) and u1(I, J) > u1(J, J). Due to the symmetry, the pair
of strategies (I, I) forms an equilibrium point.

It shall be noted that there exist good field measurements of costs and benefits in nature, which have
been plugged into particular models; see e.g. [7]. Hence the payoff can really be measured quantitatively.

7The reader is invitated to read the books [8] and [9] by R. Dawkins and [20] by Maynard Smith.



Figure 1 Skinner box

dominant, work the lever; if subordinate, sit by the food trough” would be stable – even
though it it has the paradoxical result that the subordinate pig gets most of the dominant
pig when he charges up from the other end of the sty. As soon as he arrives, he has no
difficulty in tossing the subordinate pig out of the trough. As long as there is a crumb
left to reward him, his habit of working the lever will persist.8

Using the theory of games, we would model the situation by a bimatrix game:9

Press the lever Sit by the trough

Press the lever (8,−2) → (3,5)

↑
Sit by the trough (10,−2) → (0, 0)

8For more details see [8], pp. 286–287, and the original paper [2] by Baldwin and Meese.
9We consider the profit from the whole ration to the extent of 10 utility units, the loss caused by

the labor connected with pressing the lever and running −2 units and the amount of food which the
subordinate pig manages to eat before he is tossed out by the dominant one, 5 units (these units were
chosen at random – from the strategic point of view nothings changes when the labor is evaluated with
an arbitrary negative number, the waiting subordinate pig receives nonnegative number of units and
nonnegative number of units remains for the dominant one.



Rational players would come to the equilibrium strategies in the following way. For
the second player – the subordinate pig – the first strategy is dominated by the second
one and can be therefore eliminated. The first player – the dominant pig – presumes the
rationality of his opponent and hence decides between the profit of 0 or 3 units in the
second column, which leads him to the choice of the first strategy. Indeed, the couple of
strategies (press the lever, sit by the trough) is an equilibrium point.

20 ♠ The Evolution of Cooperation

In 1984 Robert Axelrod published the book The Evolution of Cooperation [1] where he
showed that cooperation based upon reciprocity can evolve and sustain itself even among
egoists provided there is sufficient prospect of a long-term interaction. His exposition
was based on computer tournaments of various strategies in a repeated game that he
organized in 1981, historical cases and mathematical theorems.

Axelrod stimulated a deep interest in repeated games. Among other disciplines, in
biology repeated games provide a key tool for the explanation of the existence of an
altruism among non-relative individuals who interact in a long run – many instinctively
acting species shall be taken as shining examples by humans, often governed by negative
emotions. For example, a functioning reciprocal altruism underlies the regular alter-
nation of the sex roles in the hermafrodite sea bass, the reciprocal help between mails
of pavian anubi to fight off an attacker during the time one of them is mating, or the
blood-sharing by the great mythmakers vampires (the bats eating the cattle blood): the
individuals that have returned from an unsuccessful hunt are feeded by successful ones,
even non-relative; they recognize each other and preferentially feed those they know.

10 ♣ Nobel Prize for Mathematicians

In 1994 John Forbes Nash, John Harsanyi and Reinhard Selten were awarded Nobel Prize
for economics for their contributions to non-cooperative game theory – that is, in fact for
mathematics. John F. Nash was appreciated for his equilibrium concept and the foun-
dations for the analysis of non-cooperative games, the other two scientists for extensions
of the ideas of Nash. John Harsanyi showed how Nash’s concept could be applied in sit-
uations with incomplete information, Reinhard Selten refined Nash equilibrium concept
for analyzing dynamic strategic interactions.
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