CHAPTER 2

SEQUENCES



Mapping

Definition 1. Consider two non-empty sets A, B. A map-
ping of a set A to B is defined as a set F' of ordered pairs
(z,y) € A x B, where for every = € A there exists exactly
one element y € B such that (z,y) € F'.

An element x is called a preimage of an element y, an
element y is called an image of x in the mapping F. We
also say that y is the value of the mapping F' in a point =
and write y = F'(z) or x — F(x). A set Ais called a domain
of a mapping F and it is also denoted by a symbol D(F") or
Dr. The set of all images in the mapping F' is called range
of the mapping /' and it is denoted by H(F') or Hg. It is
H(F) c B.
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Symbolically, a mapping F from A to B is expressed as follows:

F:A—B, DF)=A
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Sequence of real numbers

Definition 2. A sequence (a,) of real numbers / : N — R,
where a,, = f(n).

A sequence therefore assigns a unique element a,, = f(n) € R,
called term of a sequence, to every n € N. The whole sequence
is usually denoted by (an) A graph of a sequence consists of

isolated points:
A ay
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& Example 1.

Arithmetic sequence is defined by a formula:
a; € R, a, =a;+ (n—1)d,

where a; ,d are given real numbers.

Terms of an arithmetic sequence satisfy the condition: a,.; —
ap, =d.
A number d is called difference of an arithmetic sequence.

By mathematical induction it can be proved that the sum of the
first n terms of an arithmetic sequence satisfy the equation:

sn:;ak:a1+a2+~'+an:n(al;an)znal—i—n(nQDd.
We can also consider:

Sn = @ +(a1+d) + (a1 +2d)+---+ (a1 + (n—1)d)

Sn =  an AH(an—d) +(ap—2d)+ -+ (ap — (n — 1)d)

28, = (a1 +an) +(a1 +an) + (a1 +an) + -+ (a1 + ap)

= 2s, =nla1 + a,) = s, = %n(al +ay)
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& Example 2.
Geometric sequence is defined by a formula

a €R, Qp = alqn_l )
where a, , ¢ are given real numbers.

If a1q # 0, the equation

an+1

Qn,
holds for all n € N. This ratio is called quotient of a geometric
sequence.

By mathematical induction it can be proved that the sum of the
first n elements of a geometric sequence satisfy the equation:

qt —1
-1

n ay pro g # 1,

anZak:a1(1+q+q2+~-~+q"_1) =
k=1

na, for ¢ = 1.
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Properties of Sequences

Definition 3. A sequence (a,) is called bounded from
above, it there exists K € R such that a,, < K for all n € N.

A ay

K
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Definition 4. A sequence (a,) is called bounded from
below, it there exists K € R such that a,, > K for all n € N.

A ay °
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Definition 5. A sequence (a,) is called bounded from
above, it there exists K € R such that |a,| < K foralln € N.

A ay,
K [ ]
[ ] ° .
0 ° >
[ ] [ o PS PY o n
° [ ]
®
K
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& Example 3.

Let d > 0. An arithmetic sequence (a,,) is bounded from bellow by
a, but it is not bounded from above, and thus it is not bounded.

& Example 4.

Consider a geometric sequence (a,,) with a; # 0.

If ¢ < —1 then it is bounded neither from bellow nor above.
If |¢| = 1 then it is bounded (e.g., consider K = |a4|).

If ¢ > 1 then it is bounded from below (e.g., K = |a|).
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Definition 6. A sequence (a,) is called

w increasing if a, < a,;, foralln eN,

w decreasing if a, > a,,; foralln € N,
w non-decreasing if a, < a,,, foralln € N,

= pon-increasing if a, > a,,; foralln € N.

A sequence satisfying one of the above-stated conditions is called
monotone. If itis increasing or decreasing, it is also called strictly
monotone.

& Example 5.

. —1)tt
Consider a sequence (an) where a,, = (=1)
n

Terms of the sequence: 1, —3, 5, —3, 3, =%, ...

This sequence is not monotone, it is bounded by 1.
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Definition 7. Consider a sequence (a,) and an increasing
sequence of natural numbers (k,), i.e.,

kneN a kn<kn+1-

A sequence (b,), where b, = a4, , is called a subsequence
of a sequence (ay,).

& Example 6.
A sequence (b,) defined by the equation

(_1)n2+1
’I’L2

b, =
is a subsequence of a sequence (a,), where

(-

Ay =

Inthiscase, k, =n> (hh=1=a;; bo=—= =ay ...).

P
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& Example 7.

A sequence (c,), where ¢, = — , is not a subsequence of (a,),

1
n
where (1
an - )
n

since no increasing sequence of natural numbers (k,) exists such

L . _1 _ _1

@« Example 8.

A sequence (d,) with terms

is not selected from a sequence (an), even though the sets of
terms of both sequences are equal.
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Algebraic operations

Multiplication of a sequence (a,) by a real number c € R :

c(an) = (can) .

A sum of sequences (a,) and (b,,) :

(an) + (bn) = (an +by) -

A difference of sequences (a,) and (b,) :

(an) - (bn) = (an - bn) -

A quotient of sequences (a,,), (b,), where b, # 0 foralln € N:
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Limit of a sequence

Definition 8. We say that a sequence (a,) has a limit
a € R*, if for every ¢ > 0 there exists ny € N such that

a, € U.(a) for all n > ny.
We write lim a,, = a or simply lim a,, = a.

n—oo

Notice that for a € R, a,, € U.(a) means that |a, — a| < . In this
case, we speak about a proper limit.

A a,
®
a+e :
g - I|an—a|<8 3
a o | I ° b
e ® | I °
a—¢ ! e
[ ) ] I
® ¢ ° : :
0
° ° ng n>ny
) n
[
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A proper limit can also be defined separately as follows.

Definition 9. We say that a sequence (a,) has a proper
limit « € R, if for every £ > 0 there exists ny, € N such that
la, —a| < e forall n > ny.

A ay
®
a+e ;
€ - I|a,,—a|<8 -
a e e | : ° o
[ J : | ° [
a_g ® ] !
. . .
I
0 " . . )
ng n>n
® 0 0 n
[ ]
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& Example 9.

4
Prove that lim — "~ —
n—oon3 +mn + 1

Solution. Let ¢ > 0 is given. An inequality

n-+4 5n2 5

- - =
n+n+1 ns n

N 5 . .

implies that for ng € N such that — < ¢, the following equation
No

holds foralln € N, n > ng :

n+4 _n+d 5
nd+n+1 S m34n+1l n  ng

. - . 5 .
It is sufficient to consider ny = B + 1, where [z] is a so-called

whole part of a real number z, which is defined for any z € R as
a unique integer satisfying the inequalities [z] < z < [z] + 1.
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If a limit « is infinite, it is called improper.
In this case, a,, € U.(+o0) means that a,, > 1/ and a,, € U.(—0)
means that a,, < —1/e. It can also be defined separately:

Definition 10. We say that a sequence (a,,) has an impro-
per limit +oc, if for every K € R there exists ny such that
a, > K foralln > ny.

A ay ° . e °
° °
®
° a,> K
o i
K . i
l
° ]
o |
0 - >
° o ©® ny n>ny n
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Definition 11. We say that a sequence (a,) has an impro-
per limit —oo, if for every K € R there exists n, such that
a, < K foralln > ng.

A ay o ® o
0 ° . ’?0 n>ny >
[ ] e
: n
° I
K . :
L] ® an<K
®
b °
. °
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Theorem 1. Every sequence has at most one limit.

Proof. By contradiction:

If (a,) had two different limits « and b, a # b, it would be possi-

ble to choose disjoint neighbourhoods of these points, U., (a) and

U.,(b) with U, (a) N U, (b) = 0.

|a — ]
3

From definition of a limit: there exists n; € N such that a,, € U,, (a)

for all n > ny, and ny such that a,, € U, (a) for all n > n,.

> 0.

For finite a, b € R we can consider e.g. ¢; = &5 =

But then a,, € U., (a) N U.,(b) = 0 for all n > max(n;, ns).

The assumption that « is different from b therefore leads to a con-
tradiction, thus it must be a = b. O
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Definition 12. If a sequence (a,) has a proper limit, it is
called convergent. Otherwise (i.e., its limit is improper or
does not exist) it is called divergent.

Theorem 2. Every convergent sequence is bounded.

Proof. Let lim a, = a € R. Let us choose ¢ = 1. Then there

n—oo

exists ng € Nsuchthata — 1 < a,, < a+ 1 for all n > ny. Denote
K =max{ay,as,...,an,a+ 1}, L =min{as,as,...,a,,a— 1}.

These values K and L exist, since they represent maximum and
minimum of a finite set, respectively, and the inequality L < a,, <
K holds for alln € N. [
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Theorem 3. Let (a,) and (b,) be convergent sequences, c € R.
Let lim a, = a, lim b, = b.

n—oo n—oo

Then the sequences

(can) , (an + bn) , (an . bn)

converge, too, and the following equations hold:

nh—glo(m"> = ca, (an+bn) =a+b, lim (an-bn) =ab.

n—0o0

If lim b, # 0, then the sequence (Z—") convergs to the limit
n—o0

n
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Theorem 4. Let (a,) and (b,) be convergent sequences such
thata, <0, foralln € N, then lim a, < lim b,.

n—o0 n—oo

Proof. Denote lim a,, = a, lim b, = 0.

n—o0 n—oo

—-b .
If a > b, then for ¢ = GT > 0 there exist n,, n, such that

b b
a—s:a; <anforalln>naandbn<b+s:%forall

b N
n > n,. Thus b, < % < a, foralln > max(na,nb), which is a
contradiction. [J

Remark: The limits « and b can be equal, a = b, even if a,, < b,
for all n € N. For example: a,, =0, b, = .
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Theorem 5. Let sequences (a,), (b,), (c.) be such that a, <
b, < ¢, foralln € N. If limits of (a,,) and (c,) exist and are equal,
ie., lim a, = lim ¢, = a, then the limit of a sequence (b,,) exists,

n—oo n—oo

too, and is equal to lim b, = a.
n—oo

A a, °
+€ °
a [ ® Cp P
o ® ® ® ®
a
°by o ® . . .
°
a—c¢ _
°
. [ J ° an
0
® n
°

Proof. The assumption is obvious for lim a, = 4+oc or lim ¢, =
n—oo n—oo

—oo. Let a € R. Then for each > 0 there exist n,, n. such that

a—¢ < ay,foralln >n, and ¢, < a+ ¢ for all n > n;. Thus

a—6<an§bn§cn<a+5f0ralln>nozmax(na,nb). O
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Y

Theorem 6. For any sequence (a,), lim a, = 0 if and only if

lim ‘an‘ =0.
n—oo

Proof. The proposition follows directly from the definition of a Ii-
mit. [

Theorem 7. /f lim a, = 0 and a sequence (b,) is bounded, then

n—oo

lim a,b, = 0.
n—0o0

Proof. Since lim a,, = 0, itis also lim |a,| = 0. Since a sequence

n—oo n—oo

(b) is bounded, there exists K € R such that —K < b, < K for
all n € N. Obviously, —K}an‘ < ‘anbn‘ < K|an‘, li_)m K}an‘ = 0.
]
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& Example 10.

inn!
Find the limit of a sequence a,, = S

n

Solution: Denote
1 )
a, = b, -c,, where b, =—, ¢, =sinn!.
n

Obviously,

limb,, = 0;

}sin n!! <1.

A sequence (c,) is therefore bounded and the previous theorem
imply that nh_}rilo a, = lim b,c, =0, i.e.,

n—oo

sin n!

lim

n—oo n

=0.
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& Example 11.

Find the limit of a sequence a,, = ——— .
n + sin n!

Solution: Denote

1 2C05n
an = by - o, Where b, =—, ¢, = —————.
n 1+ (sinn!)/n

Obviously,
limb,, = 0;

|cosn| < 1= 20" < 2;

i | i |
[sinn!| < 1= lim " =0 = lim (1+ Sm"‘) ~1.

n—oo n n—o0 n

A sequence (cn) is therefore bounded and the previous theorem
imply that lim a,, = 0.
n—oo
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Theorem 8. If a sequence (an) is non-decreasing, then its limit
(either proper or improper) exits and is equal to

lim a, =supa, .

n—oo
If a sequence (an) is non-increasing, then its limit (either proper
or improper) exits and is equal to

lim a,, = inf a,, .
n—o0

Remark: In other words, the theorem says that a monotone sequence
always has a limit (proper or improper), and that this limit is equal

to its supremum (for a non-decreasing sequence) or infimum (for

a non-increasing sequence).
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Proof. Suppose first that a sequence (an) is non-decreasing,
i.e., a, < a,4; foralln € N.

If (a,) is not bounded, than for any K € R there exists nq such
that a,,, > K. Since the sequence is non-decreasing, the inequa-
lity K < a,, < a, holds for all n > ng. Thus

lim a, = +oc.

n—oo
If (a,,) is bounded from above (notice that it is always bounded
from below), then there exists a finite sup{a,; n € N} =a € R.
We show that it is also a limit of the sequence (as,,).

A supremum is an upper-bound, thus a,, < a for all n € N. Con-
sider any ¢ > 0. Since a supremum is the least upper bound,
there exists ny € N such that a — ¢ < a,, < a. Since (a,) is
non-decreasing, the inequality a — ¢ < a,, < a, < a holds for all
n > ng. Thus

lim a, = a.
n—oo
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For a non-increasing sequence, the proof is analogous. [J

On the basis of this theorem, the following important relations can
be proved:

n—o0o n—oo

lim (1+—) =e, moregeneral, lim (14+—) =e
n n

1 n
& Example 12. Prove that a, = (1 + —) is convergent.

1

+ 3

Denote b, = (1 + 1/n)"*!. This sequence is decreasing:
1 1 n+2
— >
(1 n) ( 1)
n+1 n+2\""? n+1
n+1 n

n n—+2 2 n+1 ' n -+ 2 2
n+1 n ‘\n+1
> 1+1
(n—|—2)
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The last inequality is true, since
n(n + 2) ~\ n2+2n B n(n + 2) B

- 1+1-(n+2)-m+1- (n;2> : (W)Z > 1+%.

A sequence (b,) is therefore decreasing. Since b, > 0 for all n,
this sequence is bounded from bellow and has a proper limit. Let
us denote this limit by e. Since

(+3) = (3 (),

the sequence (a,) has the same limit, called Euler’s number:

1 n
lim (1 an ) =e=2,718 281 828 459 045 ... .
n

n—00
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& Example 13. Prove that

L n 1 kn
lim (1+—> = lim <1+—> = ek,
n—o00 n n—00 n

Similarly as in the previous example, it can be shown that for any
k € N, a sequence a, = (1+ k/n)"““ is decreasing and bounded
from bellow, thus its limit exists.

We can select a subsequence (by) = (apm) = (14 1/m)"*™".

According to the previous example,
lim (14 1/m)"" "= (lim (1+ 1/m)’”)k. lim (1+1/m)" = ¢~
m—r0o0 m—o0 m—o0

Since the limit of (a,) exists, it is

l{: n ‘
lim (1 + > = e*.
n—o00 n

Calculus 1 © Magdalena Hyksova, CTU in Prague 32



6n—+>5
& Example 14. Find the limit lim,, (1 + %) )
n

3n
b, = (1 + 1/m)*™+5. Obviously b3, = a,, thus (a,) is a sub-
sequence of (b,). Itis

1 2m—+>5 1 2m 1 5
1+ — =(1+=) (1+=).
m m m

Since the limit of the first factor is equal to ¢ and the limit of the
second factor is equal to 1,

1 6n-+5
lim (1 + —) =e2.

6n—+5
Solution. Denote a,, = (1 + —) . Consider a sequence

n—00 3n

Later we will prove: If lim a, =0, lim b, = +o00, then

n—oo n—oo

lim (1+ an)b" = e, where a = lim a,b,.

n—o0 n—oo
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Definition 13. A sequence (a,) is called a Cauchy
sequence, if it satisfies the Bolzano—Cauchy condition:
For any e > 0 there exist n, such that |a,, — a,| < ¢ for all
m, n, where m > ng and n > nq.

Theorem 9. A sequence (a,,) is convergent if and only if it is a
Cauchy sequence.

Theorem 10. Let (b,) be a subsequence of a sequence (a,)
with lim a, = a. Then lim b, = a.

n—oo n—oo

Proof. Forany ¢ > 0 (or K € R), itis sufficient to choose ny = k.

& Example 15.
Prove that a sequence with a,, = (—1)" does not have a limit.
Solution. For n = 2k we get a subsequence by, = ay, = (—1)%* =

1 with a limit equal to 1, for n = 2k + 1 we get a subsequence
b = agps1 = (—1)%*1 = —1 with a limit —1.
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& Example 16.
(="

n

Prove that a sequence a,, = (1 + ) does not have a limit.

Solution. For even n = 2k, we get a subsequence

1\ 2
= = (1 .
by, = agy, ( + 2k)

It is a subsequence of a sequence (1 + 1), therefore Jlim b = e.
—00
For odd n = 2k — 1, we get a subsequence

1 2k—1
= _ = 1 —_
Ck A2k—1 < o) — 1) )

which is a subsequence of a sequence (1 — 1)". Since all terms
of this sequence are less than 1, its limit cannot be equal to e > 1.
Actually, lim ¢, = e™'. Since the sequence (a,) contains two

subsequences with different limits, its limit does not exist.
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Definition 14. A point « € R* is called an accumu-
lation point of a sequence (a,) if and only if there exists a
subsequence (b,) of a sequence (a,) such thata = lim b,,.

n—oo

Theorem 11. A point a is an accumulation point of a sequence
(an) if and only if for each U.(a) there exists an infinite set N, C N
such that a,, € U.(a) for alln € N,.

Proof. The theorem is just a rephrased definition of an accumu-
lation point of a sequence. [

& Example 17.

For a sequence a,, = (—1)", accumulation points are 1 and —1,
since

lim ag, = lim 1 =1, lim ag_; = lim (—1) = —1.
k—o0 k—o0 k—oo k—o0
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& Example 18.

Find all accumulation points of a sequence

(1) (~1)n?

. 2
I cos(wn).

3

Solution. a, = b, - ¢, where

(n+1)%+ (=1)"n?
n>+n+1
Neither of these sequences has a limit.

b, =

3

_ Skl N L

T4kt 6k+1 7 kL

Since a sequence ¢, is bounded, it is klim asp—1 = 0.
—00

2k

, Cp = COS (27rn) .

02 —2k+1

0.

Calculus 1 © Magdalena Hyksova, CTU in Prague

37



Consider
S8k + 4k +1

T AR 46k + 1
cos (37k) is equal to 1 for k = 3m and —3 for k = 3m + 1. A
sequence (ag;) has therefore a subsequence (aq;,)with a limit 2
and a subsequence (agr+2) With a limit —1. Accumulation points
of (a,) are therefore —1, 0 and 2.

Aok COoS (%ﬂ'k) :

& Example 19.
Find all accumulation points of a sequence
1 1 2 1 2 3 1 2 n—2 n-—1

575737174747”'5757”'7 n ) n y e

Solution. This sequence contains all rational numbers from the
interval (0,1), i.e., all fractions ]3, where 0 < p < ¢ are natu-

ral, mutually prime numbers. Sinqce any real number can be ap-
proximated by a sequence of rational numbers (with an arbitrary
accuracy), the set of accumulation points of a sequence (a,) is
the whole interval (0, 1).
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Definition 15. Let M be a set of all accumulation points of
a sequence (a,). The number S = sup M is called limes
superior of a sequence (an) and it is denoted by lim sup a,,

n—oo
or lim a,. The number s = inf M is called limes inferior of
n—oo
a sequence (a,) and it is denoted by liminf a,, or lim a,.
n—o0 n—00

@« Example 20.

For a sequence a,, = (—1)", limes superior and limes inferior are
nh_}r&(—l) =1, nh~>_Holo(_1) =—1.
Theorem 12. A sequence (an) has a limit if and only if

lim sup a,, = liminf a,, .
n—o00 n—00
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Theorem 13. A set M is compact if and only if from each sequence
(an), where a,, € M foralln € N, a subsequence can be selected
such that its limit lies in M.
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