CHAPTER 8

OF

REAL FUNCTIONS

MORE VARIABLES

Limit of a function of *n* real variables

Definition 1. Let $f: D_f \subset \mathbb{R}^n \to \mathbb{R}^k$ be a mapping, let a be an accumulation point of its domain D_f . We say that $A \in \mathbb{R}$ is **a limit** of the mapping f at the point a if for every $\varepsilon > 0$ there exists $\delta > 0$ such that $f(x) \in U_{\varepsilon}(A)$ for all $x \in P_{\varepsilon}(a)$.

Definition 2. Let $f : D_f \subset \mathbb{R}^n \to \mathbb{R}^k$ be a mapping, $\mathbf{M} \subset D_f$. We say that the function f(x) has a limit **A** at the point *a* with respect to the set **M** if the function $\hat{f} = f_{\mid M}$ has a limit **A** at **a**. We write

$$\lim_{\substack{x \to a \\ x \in M}} \boldsymbol{f}(\boldsymbol{x}) = \boldsymbol{A}.$$

Any mapping $f: D_f \subset \mathbb{R}^n \to \mathbb{R}^k$ is given by the formula

$$\boldsymbol{f}(\boldsymbol{x}) = \boldsymbol{f}(x_1, x_2, \dots, x_n) = (f_1(\boldsymbol{x}), f_2(\boldsymbol{x}), \dots, f_k(\boldsymbol{x})),$$

where $f_i: X \to \mathbb{R}, i = 1, 2, ..., k$, are real functions of *n* variables.

Theorem 1. Let $f : X \to \mathbb{R}^k$, where $X \subset \mathbb{R}^n$. Then

$$\lim_{\boldsymbol{x}\to\boldsymbol{a}}\boldsymbol{f}(\boldsymbol{x})=\boldsymbol{A}$$

if and only if $\lim_{x \to a} f_i(x) = A_i$ for all i = 1, 2, ..., k.

Theorem 2. Let f, g be real functions of n variables, $\lim_{x \to a} f(x) = A$ and $\lim_{x \to a} g(x) = B$. Then $\lim_{x \to a} f(x) \cdot g(x) = AB$. If, moreover, $B \neq 0$, then $\lim_{x \to a} \frac{(x)}{g(x)} = \frac{A}{B}$.

• Example. Find the following limits:

a)
$$\lim_{(x,y)\to(0,0)} \frac{xy^2}{x^2+y^2}$$
, b) $\lim_{(x,y)\to(0,0)} \frac{xy}{x^2+y^2}$, c) $\lim_{(x,y)\to(0,0)} \frac{xy^2}{x^2+y^4}$

Any $(x, y) \neq (0, 0)$ can be expressed in polar coordinates as

$$x = r \cos \varphi, \ y = r \sin \varphi, \ r > 0, \ \varphi \in [0, 2\pi).$$

In the case a) we get

$$\lim_{(x,y)\to(0,0)} \frac{xy^2}{x^2 + y^2} = \lim_{r\to 0_+} r\cos\varphi \sin^2\varphi = 0$$

since $\left|\cos\varphi\sin^2\varphi\right| \leq 1$.

In the case b) we get

$$\lim_{(x,y)\to(0,0)}\frac{xy}{x^2+y^2} = \lim_{r\to 0_+}\cos\varphi\sin\varphi = \cos\varphi\sin\varphi.$$

The limit does not exist, because it depends on φ , i.e., on the direction.

The case c) is more complicated. If $x \neq 0$, i.e., $\varphi \neq 0$, π , then

$$\frac{xy^2}{x^2 + y^4} \le \frac{xy^2}{x^2}$$

and the limit is equal to zero as in the case a).

If x = 0, the whole expression is equal to zero, too. The limit is therefore equal to zero in all directions.

Nevertheless, for $x = y^2$, the expression is equal to $\frac{1}{2}$, thus the limit is different from zero on this curve.

Continuity of functions

Definition 3. Let $f : D_f \subset \mathbb{R}^n \to \mathbb{R}^k$ be a mapping, let $a \in D_f$. We say that f is **continuous at the point** a if for every $\varepsilon > 0$ there exists $\delta > 0$ such that $f(x) \in U_{\varepsilon}(\mathbf{A})$ for all $x \in U_{\varepsilon}(a) \cap D_f$.

Definition 4. Let $f : D_f \subset \mathbb{R}^n \to \mathbb{R}^k$ be a mapping, $\mathbf{M} \subset D_f$. We say that the function f(x) is continuous at the point *a* with respect to the set **M** if for every $\varepsilon > 0$ there exists $\delta > 0$ such that $f(x) \in U_{\varepsilon}(\mathbf{A})$ for all $x \in U_{\varepsilon}(\mathbf{a}) \cap \mathbf{M}$.

Remark. Obviously, f(x) is continuous at $a \in D_f$ if and only if a is an isolated point of D_f or

$$\lim_{x \to a} \boldsymbol{f}(\boldsymbol{x}) = \boldsymbol{f}(\boldsymbol{a}).$$

Definition 5. Let $f : D_f \subset \mathbb{R}^n \to \mathbb{R}^k$ be a mapping, $X \subset D_f$. We say that f is **continuous on the set X** if and only if it is continuous at every point of **X**.

Theorem 3. (Weierstrass) $f : D_f \subset \mathbb{R}^n \to \mathbb{R}$ be continuous on a compact set $\mathbf{X} \subset D_f$. Then there exist points \mathbf{x}_m and \mathbf{x}_M in \mathbf{X} such that $f(\mathbf{x}_m) \leq f(\mathbf{x})$ and $f(\mathbf{x}_M) \geq f(\mathbf{x})$ for all $\mathbf{x} \in \mathbf{X}$. I.e., a function continuous on a compact set attains its minimum and maximum on this set.