
Stationary and non-stationary
Conclusion...

Stationary and non-stationary signals

Miroslav Vlček
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Miroslav Vlček lecture 3. 12. 2009



Stationary and non-stationary
Conclusion...

Contents

1 Stationary and non-stationary

2 Conclusion...
Comparison of spectral transformations
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Stationary and non-stationary

Continuous system Discrete system

u(t) . . . input (control) vector u(n) . . . input (control) vector
x(t) . . . state vector x(n) . . . state vector
y(t) . . . output vector y(n) . . . output vector

Linear state variable system Linear state variable system

ẋ(t) = A(t) x(t) + B(t) u(t) x(n + 1) = M(n) x(n) + N(n) u(n)
y(t) = C(t) x(t) + D(t)u(t) y(n) = C(n) x(n) + D(n)u(n)

A(t) system matrix (n × n) M(n) system matrix
B(t) matrix of inputs (n × r ) N(n) matrix of inputs
C(t) matrix of outputs (m × n) C(n) matrix of outputs
D(t) matrix of outputs (m × r ) D(n) matrix of outputs
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Stationary and non-stationary

Continuous system Discrete system

u(t) . . . input (control) vector u(n) . . . input (control) vector
x(t) . . . state vector x(n) . . . state vector
y(t) . . . output vector y(n) . . . output vector

Linear state variable system Linear state variable system

ẋ(t) = A x(t) + B u(t) x(n + 1) = M x(n) + N u(n)
y(t) = C x(t) + Du(t) y(n) = C x(n) + Du(n)

A system matrix (n × n) M system matrix
B matrix of inputs (n × r ) N matrix of inputs
C matrix of outputs (m × n) C matrix of outputs
D matrix of outputs (m × r ) D matrix of outputs
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Stationary and non-stationary

• Non-stationary signals⇔ differential/difference equations
with time-varying coefficients

ÿ(t)− t y(t) = 0

• Airy’s functions
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Stationary and non-stationary
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Stationary and non-stationary

• Stationary signals ⇔ differential/difference equations with
constant coefficients

ÿ(t) + ω
2
0 y(t) = 0

• Harmonic wave (periodic functions)

cos(ω0 t) sin(ω0 t)
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Stationary and non-stationary

−3 −2 −1 0 1 2 3
−1.5

−1

−0.5

0

0.5

1

1.5

si
n(
π

t)
co

s(
π

t)

t →
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About stationarity

A deterministic signal is said to be stationary if it can be written
as a discrete sum of cosine waves or exponentials :

x(t) = A0 +
N
∑

k=1

Ak cos(2πkf0t +Φk ) (1)

x(t) =
N
∑

k=−N

Ck exp(2πkf0t +Φk ) (2)

i.e. as a sum of elements which have constant instantaneous
amplitude and instantaneous frequency.
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About stationarity

In the random case, a signal {x(n)} is said to be wide-sense
stationary (or stationary up to the second order) if its variance
is independent of time

σ
2 = E [(x − µ)2] =

1
N

N−1
∑

n=0

(x − µ)2(n)
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About stationarity

The autocorrelation function for a discrete process of length N
{x(n)} with known mean µ and variance σ,

̺xx (n,n + m) =
1

Nσ2

N
∑

n=1

(x(n) − µ)(x(n + m)− µ)

depends only on the time difference m.
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...and non-stationarity

A signal is said to be non-stationary if one of these fundamental
assumptions is no longer valid. For example, a finite duration
signal, and in particular a transient signal (for which the length
is short compared to the observation duration), is
non-stationary.
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Shor time Fourier transform of a non-stationarity signal

1 removing the mean of a signal

2 moving average filtering

3 segmentation of a signal using window functions

4 Fourier transform
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Moving average filtering

• Assume we have a EEG signal corrupted with noise

• Set the mean to zero

• Apply moving average filter to the noisy signal (use filter
order=3 and 5)

• The higher filter order will remove more noise, but it will
also distort the signal more (i.e. remove the signal parts
also)

• So, a compromise has to be found (normally by trial and
error)
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Moving average filtering - MATLAB file

% moving average filtering
% December 3, 2009
load(’zdroj.mat’);
y=EEG(3).Data(:,1);
N=length(y);
% length of average window is 3
for i=1:N-2,
signal3(i)=(y(i)+y(i+1)+y(i+2))/3;
end
signal3(N-1)=(y(N-1)+y(N))/2;
signal3(N)=y(256);
%length of average window is 5
for i=1:N-4,
signal5(i)=(y(i)+y(i+1)+y(i+2)+y(i+3)+y(i+4))/5;
end
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Moving average filtering - MATLAB file

signal5(N-3)= (y(N-3)+y(N-2)+y(N-1)+y(N))/4;
signal5(N-2)=(y(N-2)+y(N-1)+y(N))/3;
signal5(N-1)=(y(N-1)+y(N))/2;
signal5(N)=y(N);
subplot(3,1,1), plot(y, ’g ’); title(’original
EEG’)
subplot(3,1,2), plot(signal3,’r’); title(’EEG
signal with averaging of length 3’)
subplot(3,1,3), plot(signal5,’b’); title(’EEG
signal with averaging of length 5’)
print -depsc figureEEG
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Moving average filtering
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Comparison of spectral transformations

STFT, Wavelets, Huang Transform

STFT Wavelets Huang

inversion yes yes, but... no inversion

resolution in time limited good good

resolution in frequency good bad floating frequency
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Comparison of spectral transformations

Thank you for your attention
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