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LocalLocal model model networksnetworks, , velocityvelocity--
basedbasedlinearisationlinearisationandandblendedblended
multimodelmultimodelsystemssystems
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Multilayer networks

Ridge basis function� multilayer perceptron
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Multilayer networks

Radial basis function� RBF network
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RBF networks:
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Local linearisations of nonlinear process connected in network
� Local model network

Optimisation of local
model parameters in a 
similar way to neural
networks.
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Operating
Regime 2

Operating
Regime 4

Operating
Regime 3

Operating
Regime 1

Divison of operating area based on different operating
regimes.
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Uniform Uniform divisiondivision ofof operatingoperatingareaareato to locallocal
linearlinearareasareas
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DynamicDynamicsystemssystems
LinearLinear is is simplesimple ......
Nonlinear system approximated local with linear model.
All real systems are nonlinear⇒ linearisation is the basic step of

all linear based controller designes.
Standard method: the first order Taylor linearisation in operating

point or linear system identification. Valid only in thevicinity of
selected equilibrium point.

DivideDivide andand conquerconquer ......
Standard analysis methodof nonlinear systems: analysis of

linearised models arround representative number of equilibrium
points. 

Standard method for designof nonlinear systems control: design of
local controllers for linearised process models and integration
into a single nonlinear controller. 
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Block sheme of local model network as it is frequently used 
for controllers:

Scheduling vector
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Closed-loop scheme of frequently used implementation of
divide-and-conquer control design.



Systems modelling from data 11

Nonlinear system’s model as a family of linear
systems obtained with linearisations in equilibrium
points

state

Curve of equilibrium
points

input

Equilibrium point,
Operating point
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Linear in parameters (affine) versus linear

� Result of linearisation with Taylor expansion is an affine system
– linear in parameters.

higher order derivations
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The constant element – operating point⇒ superposition condition is 
not valid, the system is not linear.

The constant element can be very large⇒ it is not a constant
“disturbance”.

The constant element is changing when we change operatingpoints
⇒ it can not be neglected, its contribution to dynamics is 
considerable.
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Interpolation
– blending
of local
models
arround
equilibrium
points
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MovingMoving betweenbetweenlocallocal modelsmodels
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SelectionSelectionofof schedulingschedulingvectorvector

Important!
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An An exampleexampleofof reducedreduced
schedulingschedulingvectorvector
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VelocityVelocity--basedbased linearisationlinearisation
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Velocity-based linearisation
Nonlinear system r)G(x,yr)F(x,x ==      ,ɺ

or equivalently ( ),

( )

 with   = const.

= + +
= + +
= ∇ ∇x r

x Ax Br f ρ

y Cx Dr g ρ

ρ ρ(x,r) ρ, ρ

ɺ

We derive ...

rρρgDwρρgCy

rρρfBwρρfAw

wx

rx

rx

ɺɺ

ɺɺ

ɺ

))(())((

))(())((

∇∇++∇∇+=
∇∇++∇∇+=

=

After “freezing” in a 
operating point, we get
velocity-based linearised
model

rρρgDwρρgCy

rρρfBwρρfAw

wx

rx

rx

ɺɺ

ɺɺ

ɺ

))(())((

))(())((

11

11

∇∇++∇∇+=
∇∇++∇∇+=

=



Systems modelling from data 19

� A linear system (the 'velocity-based linearisation') is 
associated with every operating point of a nonlinear 
system (not just the equilibrium points). 

� A family of velocity-based linearisations is therefore 
associated with the nonlinear system. This family 
embodies the entire dynamics of the nonlinear system 
and so is an alternative representation. It is 
emphasised that this representation is valid globally 
and does not involve any restriction to the vicinity of 
the equilibrium points.

� Large transients and sustained non-equilibrium 
operation can both be accommodated.
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• We retained the direct connection with linear subsystems. 

•We obtained a “transparent” system.

Remark: The method introduces some new problems, e.g. 
derivation of input signal, but this can be circumvented in 
modelling as well as later in design phase.
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Blended multimodel systems

• Finite number of local models

• More practical.

• Advantages of velocity-based linearisation over common
LMN:

• Linearlocalne models (not linear in parameters - affine).

• Direct relation between local and global dynamics.

• Global dynamics is approximated with weighted
combination of local models properties and dynamics.
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Blended model based on velocity-based linearisation:
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Example: pendulum

bFQQ +−−= θθθ sinɺɺɺ
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Approximate
nonlinear system
with three blended
velocity-based
linearised local
models at angles 0, 
π/2 in π.
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Very small
number of local
models: only three
local models to 
cover the entire
operating region

[0, π ]
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Comparison ofw2 signal of original (full curve) and blended
system (dashed curve)
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Comparison of output responseθ to specific input signal – operating
area arroundπ /4 rad, which is the most tricky region
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Residuals
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