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Multilayer networks

Ridge basis functios> multilayer perceptron
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Multilayer networks

Radial basis functior> RBF network
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RBF networks:
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Local linearisations of nonlinear process connected twoi
= Local model network

Optimisation of local
model parameters in a

similar way to neural .

networks.
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Divison of operating area based on different operating
regimes.
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Operating
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Uniferm division ofi operatingareatorlocal
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Dynamicsystems
Linear Issimple...
Nonlinear system approximated local with linear model.

All real systems are nonlineas linearisation is the basic step of
all linear based controller designes.

Standard method: the first order Taylor linearisatioperating
point or linear system identification. Valid only in thesinity of
selected equilibrium point.

Divide and conguer ...

of nonlinear systems: analysis of
linearised models arround representative number of déquimn
points.

of nonlinear systems control: design of*

local controllers for linearised process models and irategmn -

Into a single nonlinear controller.
EEN
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Block sheme of local model network as it Is frequentgd

for controllers:
Scheduling vector

. M odel/ .
Controller
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Closed-loop scheme of frequently used implementation of
divide-and-conquer control design.

‘ Controller1 weighting
function

Controller2

Controller N

controller bank
model N

model bank
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Nonlinear system’s model as a family of linear
systems obtained with linearisations in equilibrium
poInts

Operating point

et
3

Curve of equilibrium
points
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Linear in parameters (affine) versuslinear

Result of linearisation with Taylor expansion is an agfsystem
— linear in parameters.

X =F(X,r)=X=F(X,,ry) + L F(X,,r, ) (X =X%,)

+DW higher order derivations

The constant element — operating paitsuperposition condition Is
not valid, the system is not linear.

The constant element can be very latgeat is not a constant
“disturbance”.

The constant element is changing when we change opegiings :
= It can not be neglected, its contribution to dynamics is 2

considerable.
EEE
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dynamic system
w9
. —

x = Flx,u) b
y = hi(x)

validity functions
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of local
models
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Moving betweernocal imodels
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Selectionol scheduling/ector

| mportant!
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Velocity-based linearisation
Nonlinear system X = F(x,r), y = G(X,I’)

or equivalently X =AX +Br +1(p),
y =Cx +Dr +g(p)
p =p(x,r) with O p,01 p = const
X =W
W = (A +Uf (p)U,p)w +(B + 01 (p)UJ, p)r

We derive ...

y =(C+0g(p)U,p)w + (D +0g(p)L, p)r

After “freezing” in a

operating point, we get [ _
) : : X=W

velocity-based linearisec

model W = (A+Df (pl)Dxp)W+(B+Df (pl)Drp)r
y - (C + Dg(pl)Dxp)W + (D + Dg(pl)Drp)r
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A linear system (the 'velocity-based linearisajio’
associated with every operating point of a nonlinea
system (not just the equilibrium points).

A family of velocity-based linearisations is thenefo

associated with the nonlinear system. This family
embodies the entire dynamics of the nonlinear ayste

and so Is an alternative representation. Itis
emphasised that this representation is valid glpbal
and does not involve any restriction to the vigimt
the equilibrium points.

Large transients and sustained non-equilibrium
operation can both be accommodated.
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- We retained the direct connection with linear subsystems.

*\We obtained a “transparent” system.

Remark: The method introduces some new problems, e.g.

derivation of input signal, but this can be circumvented in
modelling as well as later in design phase.
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Blended multimodel systems
e Finite number of local models

* More practical.

* Advantages of velocity-based linearisation over common
LMN:

 Linearlocalne models (not linear in parameters - affine).

 Direct relation between local and global dynamics.

e Global dynamics is approximated with weighted :

combination of local models properties and dynamics®
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Blended model based on velocity-based linearisation:

X =W
n

W =Y {(A +0f(p, )T, 0)w + B+ Of(p, )0, p)r} 14 ()

1=1
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X, =W,
W, = (A +Uf(p, )Uyp)w, + (B +0if(p, ), p)Y
X, =W,
W, = (A +0f(p, )U, p)w, +(B+0f(p, )T, p)r

X, =W,
W, = (A +0f(p, ), p)w, + (B +Uf(p, )L, p)r

Weighted combination of
solutions

W=iwmw)
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Example: pendulum

6 = -Q68 -Qsind +bF

Approximate
nonlinear system
with three blended
velocity-based
linearised local
models at angles 0,
W2 INTU
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X =W

W = {(A+DOf(p, )0, p)w + (B + Df(p, )T, p)r } 4, (0)

3
=1

Very small
number of local
models: only three
local models to
cover the entire
operating region

[0, TT]
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Comparison ofw, signal of original (full curve) and blended
system (dashed curve)
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Comparison of output responBéo specific input signal — operating
area arroundt/4 rad, which is the most tricky region

theta (rad)

Systems modelling from data




Residuals
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