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GEOMETRIC PROBABILITY 
 

 

Classical probability: 
– based on combinatorics considerations 

– e.g.: probability that two sixes come in 
two throws: 

number of cases favourable to the event 
P= 

number of all cases (equally possible)
 

 
Geometric probability: 

– uncountable number of cases 

– e.g.: probability that a point lying in the 
set A lies also in the set B: 

↑ ↑ Measure of the set A
P(X A | X B) = 

Measure of the set B
 



Points on lines, curves ... measure: length 
 

 
 

 

 
 
 
Points in regions in plane/space ... measure: area/ volume 
 
 
 
 
 
 

( | ) CDP X CD X AB
AB

↑ ↑↑ ↑↑ ↑↑ ↑ ====



ROOTS OF GEOMETRIC PROBABILITY  
 
 

Prehistory – isolated problems: 
 
• Isaac Newton (1642 – 1727), 1664 – 1666 

• Louis Leclerc, Comte de Buffon (1707 – 1788), 1733,  
1777 ... needle and several other problems   

• Pierre Simon de Laplace (1749 – 1827), 1812  

• Isaac Todhunter (1820 – 1884), 1857 
 



History –  theory of geometric probability: 
 
•••• Since 1865:  British journal Mathematical Questions 
with Their Solutions from the ‘Educational Times‘ : 
various problems and exercises concerning GP   

James Joseph Sylvester (1814 – 1897) 
Morgan William Crofton (1821 – 1895) 
Thomas Archer Hirst (1830 – 1892) 
Arthur Cayley (1821 – 1895)                     and  others 

 
•••• French mathematicians:  

Gabriel Lamé (1795 – 1870) 
Joseph Bertrand (1822 – 1900) 
Joseph-Émile Barbier (1839 – 1889) 

 



JOSEPH-ÉMILE BARBIER (1839 – 1889) 
 

Note sur le problème de l’aiguille et le jeu du joi nt 
couvert. Journal des mathématiques pures et 
appliquées 5 (1860), 273-286 
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Theorem 1: A plane contains a flexible fibre of len gth LA 
meters in each its square metre, taking a variable form, 
and let another flexible fibre of length l metres be 
randomly thrown on the plane, then the mean number of 
intersection points oscillates, independently of th e 
number of trials, around (2/ π)·LA l 
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Theorem 2: Let us imagine an unbounded space divide d 
into cubes of one metre edge. Let us suppose that e very 
such cube contains S square metres of a cloth (that need 
not be evolvable into a plane). A fibre of length L, which 
passes randomly through the space, traverses the cl oth 
in (1/2) ·SV L points on average. 
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Theorem 3: Each cubic metre of an unbounded space i s 
traversed by a fibre of length LV metres. Then a cloth of 
surface area S square metres is intersected by the fibre 
in (1/2)·LV S points on average. 
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Theorem 4: Suppose finally that each cubic metre of  
a space contains SV square metres of cloth. Then 
the mean length of the intersection of these cloths  
with another cloth of s square metres is (3⁄2) ·πSVs. 

 

 
 
 
BA ... length of the intersection in one area unit 
 
After a small correction of the constant: 
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EMANUEL CZUBER (1851 – 1925) 
 
 

Geom. Wahrscheinlichkeiten und Mittelwerte , 1884 

� The first monograph solely devoted to geom. prob. 

� Summary of the known theory, detailed theoretical 
exposition + exercises 

� History of the theory (Buffon up to „present“) 

� Explicit citation of French and English predecessor s 

� New ideas and generalizations 

e.g., Crofton (1868) derived key theorems concernin g 
sets of points and straight lines in a plane & brie fly 
outlined possible generalization to 3D;  
this was done in full details by Czuber 



Points in the plane – area estimation 
 
 
 
 
 
 

 
Estimation: 

 
 
 
 
 
 



Points in the plane – area estimation 
 
 
 
 
 
 
 
 
 



Points in the space – volume estimation 



Points in the space – volume estimation 
 
 
 
 
 
 

 
Estimation: 

 
 

 
 
 
 



Points in the space – volume estimation 
 
 
 
 
 
 
 
 
 
 

 
 
 



Example: Estimation of the volume of an egg: 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

Distance of cutting planes: 6.4 cm 





 



 
 
 
 
 
 
 

 
 
 
 
 
VV ... average fraction of volume of the egg occupied  by yolk 
 

AA ... average fraction of area on a plane section oc cupied by 
yolk 

 

PP ... average proportion of test points covered by y olk 



 
Dolerite 



 
Sandstone 



Important practical implemen-
tation of the spatial grid:  
in confocal and transmission 
microscopy 
 
cutting thin section of a tissue 
 
���� visualization of an optical 
section (an image of the focal 
plane only) situated inside a 
thick  section 
 
 
 
 
epidermis – confocal sections 



           Population 

 

 

 

              Random  
sample  

 

 

 

 

Statistics



Stereology 
 

A body of math. methods for the 
estimation of certain geometric 
characteristics of three-dimen-
sional structures on the basis of 
probes of a lower dimension 
(plane sections, linear 
projections). 

 



Tissue probe 
 
 
 
 
 
 
 
 
 
Geological exploration           Oil exploration/we ll 
 
 

 
 



ACHILLE ERNEST OSCAR JOSEPH DELESSE 
(1817 – 1881) 

 
 

French geologist and mineralogist 
 

Procede machanique pour determiner la composition d es 
roches , C.R. Acad. Sci. 25 (1847), p. 544 
 

Quantitative image analysis 
Area density of the investigated 
mineral in the section 
==== volume density in the rock 
 

Assumptions: 
• random section 
• section area >> grains 
• enough large section 

(statistically sufficient amount of grains) 
• the rock is spatially homogenous 



 
 

 
 

polished covered with 
waxed transp. 
paper, exposed 
portions of the 
mineral traced 

glued on tin 
foil (known 
weight) 
 

traces of the 
minerals cut out 

 

Volume fraction of a mineral Y:  
 

= =Y Y Y

T T T
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VV = AA 

 

ordering  weighing of 
groups 

 



Unit cube of a rock X 

 
 
 
 
 

Y ... investigated mineral of the volume V(Y) 
Tz ... horizontal plane in the height z 

 

Fubini: solid volume equals the integral of areas of planar  sections  

 
 

→→→→ expectations →→→→ AA = VV 
 

3-dimensional reconstruction of an object is not ne cessary 
for volume estimation 



Cavalieri’s principle:  

If two solid objects have the same height and the r atio of 
areas of cross-sections on planes parallel to the b ase in the 
same distance from it is constant, then the ratio o f volumes 
of these solid objects is the same.  
 

 

 

 

 

 
 

The ratio of volumes of the investigated component and the 
whole sample can be estimated from the ratio of sec tion 
areas – provided the conditions for a proper statistical 
selection are satisfied. 



HENRI CLIFTON SORBY 
 
 

British geologist & anthropologist 
 

1856: On slaty cleavage as 
exhibited in the Devonian 
limestones of Devonshire , Phil. 
Mag., v. 4, no. 11, p. 20–37. 
 

Camera lucida (Delesse method)  



HENRI CLIFTON SORBY 
 
 

British geologist & anthropologist 
 

1856: On slaty cleavage as 
exhibited in the Devonian 
limestones of Devonshire , Phil. 
Mag., v. 4, no. 11, p. 20–37. 
 

Camera lucida (Delesse method) 

 
A. Johannsen:  
A planimeter method for the 
determination of the percentage 
composition of rocks . Jour. 
Geology, 27 (1919), 276–285  

Camera lucida 

areas determined by a platimeter 



J. Joly: The petrological examination of Paving-
Sets . Proc. Roy. Dublin Soc. 10 (1903), p. 62–92. 
 

cutting and weighting →→→→ graphical summing 
 



AUGUST KARL ROSIWAL (1860 – 1913)  
 
 

Austrian geologist, mineralogist, petrographer 
 

Ueber geometrische Gesteinsanalysen. Ein einfacher Weg zur 
ziffremassigen Foxtstellung des Quantitätsverhäitni ssos der 
Mineralbestandtheile gemengter Geneine . Verhandlungen der 
k.k. Geolog. Reichsanstalt Wien, 5(6) 143–174. 
 
Instead of regions: length of line segments 
 
linear fraction of the 
mineral Y  

= area fraction of Y  

= volume fraction of Y: 

= =Y Y Y
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L A V
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William R. Thompson  
Quantitative Microscopic Analysis , Journal of Geology 
38(1930), 193 
 

Andrej Alexandrovi č Glagolev (1894 – 1969) 
On the geometrical methods of quantitative mineralo gic analysis of 
rocks. [russisch], Trans. Inst. Econ. Min., Moskva, 59 (19 33), 1–47 
 

Quantitative analysis with the microscope by the po int method.  
Engineering and Mining Journal 135(1934), p. 399 
 

Regular point grid randomly put on 
the plane section 
 

Number of points that hit the 
investigated component 
 

 
 

generalization of Newton’s circle  
and Buffon’s carreau  



Stereology & biomedicine  
 
 

First-order morphological parameters:  
volume, surface area, length, number 

 

Essentially every field of biomedical research at o ne 
time or another focuses on changes in one of the fo ur 
first-order parameter  

– degeneration, toxicity, atrophy/hypertrophy, dysg enesis, 
proliferation  

 
H. W. Chalkey, 1943:   
Method for quantitative morphological analysis of 
tissues . Jour. Natl. Cancer Inst. 4, 47-53 
 
one of the first to apply the point counting method  to 
histological images 
 



The bulk of biological and medical knowledge: 

QUALITATIVE OPINIONS OF EXPERTS 
 

Limitations:  
expert knowledge: highly focused on a particular ti ssue 

⇒⇒⇒⇒ almost as many experts as tissues in the body 
e.g., liver biopsies of alcoholics, brain degenerat ion in 
Alzheimer’s disease 
poor reproducibility between observers 
 
1960’s:  SEMIQUANTITATIVE TERMS for differentiating 
morphological changes (e.g., none, mild, moderate, severe) 
 
Problems: data are not amenable to powerful methods  
of statistical analysis; 
one must rely on less rigorous nonparametric 
approaches to test whether inferences are likely to  be 
true on the basis of probability 



1961, Feldberg, Black Forest, Germany;  
Prof. Hans Elias, biologist:  

meeting of diverse researchers from fields of biolo gy, 
geology, engineering and materials sciences 
 

Aim: to benefit scientists in several disciplines w ho had 
one thing in common: struggling with the quantitati ve 
analysis of 3-D images based on their appearance on  2-
D sections.  
 

At this meeting, Prof. Elias suggested “stereology”  as 
a useful term to describe their discussions. 
 

→→→→ Prof. Elias sent a small announcement on the 
proceedings to the journal Science 
 

→→→→ large response from researchers in academia, 
government agencies, and private industry at 
institutions around the world 
 



1962: the International Society for Stereology (ISS ) was 
established with the 1st Congress of the 
International Society for Stereology in Vienna, 
Austria. Elias elected the founding president  

 
→→→→ every other year 
 

⇒⇒⇒⇒ biologists discovered that their stereology 
colleagues in different fields had developed 
practical approaches that would be of 
immediate use in their research 



1960’s:  technological innovations in microscopy 
  ⇒⇒⇒⇒ biologists could view tissues, cells, blood vessel s 
and other objects in tissue with greater clarity an d 
specificity than ever before 
 
Developments:  

– the availability of affordable, high-resolution 
optics for light microscopy  

– refinements in electron-microscopy instruments 
and methods for preparation of specimens 

– immune-based visualization of specific proteins 
in biological tissue (immunocytochemistry)  

 
still rather laborious methods 

e.g., in the 1960s, for example, a worker in one in fluential 
publication spent two years counting 242,681 cells in 
a particular area on one side of the brain 



1970’s:  important breakthrough:  
mathematicians joined the ISS  and began to apply their 
unique expertise and perspective to problems 

– biological objects cannot be modeled as classical 
shapes  (spheres, cubes, straight lines, etc.), 
Euclidean geometry formulas do not apply 

– rejected so-called 'correction factors' intended to  
force biological objects into Euclidean models base d 
on false and non-verifiable assumptions 

– the correct foundation for quantification of arbitr ary, 
non-classically shaped biological objects: stochastic 
geometry and probability theory  

– developed efficient, unbiased sampling strategies f or 
analysis of biological tissue  

– Do More, Less Well (Prof. Ewald Weibel) 



Sampling theory  ⇒⇒⇒⇒ accurate estimates of changes 
within a population by making a relatively small nu mber 
of measurements in a few randomly sampled individua ls 

Ewald Weibel, 1972: 

Structure and function are strictly interdependent 

Example: structure and function of the lung 

– calculating diffusion capacity from physiological  
information on oxygen uptake and from stereological  
information 

→→→→ estimate of the limit of performance of the 
pulmonary gas-exchange apparatus under ideal or 
optimal conditions 

= the first example of the usefulness of stereology  in 
biology and medicine 



OSTEOPOROSIS 
 
 

Half of women over seventy will have a fracture as 
a result of osteoporosis. For many of them, this wi ll 
llleeeaaaddd   tttooo   aaa   dddeeeccclll iiinnneee   iiinnn   ttthhheeeiii rrr    qqquuuaaalll iii tttyyy   ooofff    lll iii fffeee   aaannnddd   
iiinnndddeeepppeeennndddeeennnccceee... 
 

– bone loss 
– significant changes in bone 
micro-architecture, tissue 
composition and micro-damage  
– Celluls processes and 
molecular signalling pathways 
governing pathological bone 
resorption have been identified 
to a certain extent.  



Morgan William Crofton, 1868 
 

Curves in the plane and interactions with lines  

Theorem: Measure of lines hitting a closed convex 
curve in the plane is equal to the length of the cu rve.  

 

 

 

 

 

b ... projection length of K  
(convex region X) into the  
given direction  

X 



Curves in the plane and interactions with lines 
 

Theorem: Measure of lines hitting a closed nonconve x 
curve in the plane is equal to the length of the fi bre 
tightly taut around the curve.  
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X 

Theorem: Measure of lines hitting a closed convex 
curve in the plane is equal to the length of the cu rve.  

 

 
 

 

mean projection length  
of X into the isotropic  
bundle of directions: 
 
 

 
 

 

Crofton-Cauchy Formula 



Example: circle 

 

w  = d 

 

L  = ππππ    d 

 



Example: square 

 

w  = 4a/ππππ 

 



Analogously in space: 
 

4∗∗∗∗mean projection area  
= surface in general !!!  
 
 
 
 
sphere: S = 4 ∗∗∗∗ππππR 2 

cube: 6 a2/4 = mean projection area  
 

Convex bodies :  

proportionality between mean projection measures 
of an object and its boundary measures !!! 



Theorem:  

Probability p that a line hitting a bounded convex 
region K1 with the perimeter L1 hits also another 
convex region K2 lying inside K1 and having the 
perimeter L2: 

2

1
 

L
p

L
==== . 

 



Emanuel Czuber, 1884 
 

 

Remark: on this result an experimental rectifi-
cation of a closed convex curve can be based 

 

The curve that has to be rectified is surrounded by  
another closed convex curve (circle, polygon) of th e 
known length L, a great number s of arbitrary straight 
lines intersecting L are drawn in the plane of both curves, 
and those intersecting also the curve of the unknow n 
length l are counted; let their number be m.  
The higher is s, the more accurately  
hold the equalities 
 
 .L

s

m

Ls

m =⇒= l
l



Crofton formula: 
 

ΩΩΩΩ ... area of a region bounded by  

a closed convex curve 
L ... its perimeter 

C    ... chord length 
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Second Crofton formula: 
 

ΩΩΩΩ ... area of a region bounded by  

a closed convex curve 
L ... its perimeter 

C    ... chord length 
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Lines in space 

Theorem: measure of all lines hitting a closed conv ex 
surface is proportional by ππππ/2 to its surface area  

Crofton, 1868 (concluding remark), Czuber, 1884   
 

 

ΩΩΩΩ ... measure of 
lines hitting S 

parallel to m 
 
 
 
 
 

 



 

 

 

 

 

 

 

 

 

 

Measure of all lines hitting a surface S: 

sin
2

M d d S
π ππ ππ ππ π
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Corollary:  Probability p that a line hitting a convex 
surface  K1 with the surface area S1, hits also another 
convex surface K2 lying inside K1 and having the 
surface area S2: 

2

1
 

S
p

S
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Nevertheless, a similar remark  
concerning the application of this 
result for the estimation of the area  
of a closed convex surface is not explicitly mentio ned.  

 
Planes in the space, ... 



„What is it for?“ 
Anatomie 
Histologie 
Neurofyziologie 
Patologie 
Dermatologie 
Nefrologie 
Onkologie 
Kardiologie 
Biologie 
Metalurgie 
Geologie 
Petrologie 
  ............. 

 
 


